/**********************************************************/ /* Serial Bootloader for Atmel mega8 AVR Controller */ /* */ /* ATmegaBOOT.c */ /* */ /* Copyright (c) 2003, Jason P. Kyle */ /* */ /* Hacked by DojoCorp - ZGZ - MMX - IVR */ /* Hacked by David A. Mellis */ /* Hacked by Markus Koch */ /* */ /* This program is free software; you can redistribute it */ /* and/or modify it under the terms of the GNU General */ /* Public License as published by the Free Software */ /* Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will */ /* be useful, but WITHOUT ANY WARRANTY; without even the */ /* implied warranty of MERCHANTABILITY or FITNESS FOR A */ /* PARTICULAR PURPOSE. See the GNU General Public */ /* License for more details. */ /* */ /* You should have received a copy of the GNU General */ /* Public License along with this program; if not, write */ /* to the Free Software Foundation, Inc., */ /* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* */ /* Licence can be viewed at */ /* http://www.fsf.org/licenses/gpl.txt */ /* */ /* Target = Atmel AVR m8 */ /**********************************************************/ #include #include #include #include #include #include #define MAX_TIME_COUNT (F_CPU>>4) /* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */ #define HW_VER 0x02 #define SW_MAJOR 0x01 #define SW_MINOR 0x12 // AVR-GCC compiler compatibility // avr-gcc compiler v3.1.x and older doesn't support outb() and inb() // if necessary, convert outb and inb to outp and inp #ifndef outb #define outb(sfr,val) (_SFR_BYTE(sfr) = (val)) #endif #ifndef inb #define inb(sfr) _SFR_BYTE(sfr) #endif /* defines for future compatibility */ #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif /* Adjust to suit whatever pin your hardware uses to enter the bootloader */ #define eeprom_rb(addr) eeprom_read_byte ((uint8_t *)(addr)) #define eeprom_rw(addr) eeprom_read_word ((uint16_t *)(addr)) #define eeprom_wb(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val)) #define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :( #define SIG2 0x93 #define SIG3 0x07 #define PAGE_SIZE 0x20U //32 words void putch(char); char getch(void); void getNch(uint8_t); void byte_response(uint8_t); void nothing_response(void); union address_union { uint16_t word; uint8_t byte[2]; } address; union length_union { uint16_t word; uint8_t byte[2]; } length; struct flags_struct { unsigned eeprom : 1; unsigned rampz : 1; } flags; uint8_t buff[256]; //uint8_t address_high; uint8_t pagesz=0x80; uint8_t i; //uint8_t bootuart0=0,bootuart1=0; void (*app_start)(void) = 0x0000; int main(void) { uint8_t ch,ch2; uint16_t w; /* Disable interrupts */ cli(); /* Pre-init I/O */ DDRB = 0; DDRC = 0; DDRD = 0; PORTB = 0; PORTC = 0; PORTD = 0; asm volatile("nop\n\t"); /* initialize UART(s) depending on CPU defined */ /* m8 */ UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate UBRRL = (((F_CPU/BAUD_RATE)/16)-1); UCSRB = (1<0x85) getch(); nothing_response(); } /* AVR ISP/STK500 board requests */ else if (ch == 'A') { ch2 = getch(); if (ch2==0x80) byte_response(HW_VER); // Hardware version else if (ch2==0x81) byte_response(SW_MAJOR); // Software major version else if (ch2==0x82) byte_response(SW_MINOR); // Software minor version //else if (ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56 else byte_response(0x00); // Covers various unnecessary responses we don't care about } /* Device Parameters DON'T CARE, DEVICE IS FIXED */ else if (ch == 'B') { getNch(20); nothing_response(); } /* Parallel programming stuff DON'T CARE */ else if (ch == 'E') { getNch(5); nothing_response(); } /* Enter programming mode */ else if (ch == 'P') { nothing_response(); // FIXME: modified only here by DojoCorp, Mumbai, India, 20050626 //time_count=0; // exted the delay once entered prog.mode } /* Leave programming mode */ else if (ch == 'Q') { nothing_response(); //time_count=MAX_TIME_COUNT_MORATORY; // once the programming is done, // we should start the application // but uisp has problems with this, // therefore we just change the times // and give the programmer 1 sec to react } /* Set to bypass until restart */ else if (ch == 'X') { while (1) { if (UCSRA & (1 << RXC)) { UDR = UDR; } } } /* Send 'X' via UART TX (set next unit to bypass) */ else if (ch == 'Y') { putch('X'); continue; } /* Start user code NOW */ else if (ch == 'Z') { app_start(); } /* Erase device, don't care as we will erase one page at a time anyway. */ else if (ch == 'R') { nothing_response(); } /* Set address, little endian. EEPROM in bytes, FLASH in words */ /* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */ /* This might explain why little endian was used here, big endian used everywhere else. */ else if (ch == 'U') { address.byte[0] = getch(); address.byte[1] = getch(); nothing_response(); } /* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */ else if (ch == 'V') { getNch(4); byte_response(0x00); } /* Write memory, length is big endian and is in bytes */ else if (ch == 'd') { length.byte[1] = getch(); length.byte[0] = getch(); flags.eeprom = 0; if (getch() == 'E') flags.eeprom = 1; for (w=0; w byte location "rol r31 \n\t" "ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM "ldi r29,hi8(buff) \n\t" "lds r24,length \n\t" //Length of data to be written (in bytes) "lds r25,length+1 \n\t" "sbrs r24,0 \n\t" //Even up an odd number of bytes "rjmp length_loop \n\t" "adiw r24,1 \n\t" "length_loop: \n\t" //Main loop, repeat for number of words in block "cpi r17,0x00 \n\t" //If page_word_count=0 then erase page "brne no_page_erase \n\t" "rcall wait_spm \n\t" "ldi r16,0x03 \n\t" //Erase page pointed to by Z "sts %0,r16 \n\t" "spm \n\t" "rcall wait_spm \n\t" "ldi r16,0x11 \n\t" //Re-enable RWW section "sts %0,r16 \n\t" "spm \n\t" "no_page_erase: \n\t" "ld r0,Y+ \n\t" //Write 2 bytes into page buffer "ld r1,Y+ \n\t" "rcall wait_spm \n\t" "ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer "sts %0,r16 \n\t" "spm \n\t" "inc r17 \n\t" //page_word_count++ "cpi r17,%1 \n\t" "brlo same_page \n\t" //Still same page in FLASH "write_page: \n\t" "clr r17 \n\t" //New page, write current one first "rcall wait_spm \n\t" "ldi r16,0x05 \n\t" //Write page pointed to by Z "sts %0,r16 \n\t" "spm \n\t" "rcall wait_spm \n\t" "ldi r16,0x11 \n\t" //Re-enable RWW section "sts %0,r16 \n\t" "spm \n\t" "same_page: \n\t" "adiw r30,2 \n\t" //Next word in FLASH "sbiw r24,2 \n\t" //length-2 "breq final_write \n\t" //Finished "rjmp length_loop \n\t" "wait_spm: \n\t" "lds r16,%0 \n\t" //Wait for previous spm to complete "andi r16,1 \n\t" "cpi r16,1 \n\t" "breq wait_spm \n\t" "ret \n\t" "final_write: \n\t" "cpi r17,0 \n\t" "breq block_done \n\t" "adiw r24,2 \n\t" //length+2, fool above check on length after short page write "rjmp write_page \n\t" "block_done: \n\t" "clr __zero_reg__ \n\t" //restore zero register : "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"); /* Should really add a wait for RWW section to be enabled, don't actually need it since we never */ /* exit the bootloader without a power cycle anyhow */ } putch(0x14); putch(0x10); } } /* Read memory block mode, length is big endian. */ else if (ch == 't') { length.byte[1] = getch(); length.byte[0] = getch(); if (getch() == 'E') flags.eeprom = 1; else { flags.eeprom = 0; address.word = address.word << 1; // address * 2 -> byte location } if (getch() == ' ') { // Command terminator putch(0x14); for (w=0; w < length.word; w++) { // Can handle odd and even lengths okay if (flags.eeprom) { // Byte access EEPROM read putch(eeprom_rb(address.word)); address.word++; } else { if (!flags.rampz) putch(pgm_read_byte_near(address.word)); address.word++; } } putch(0x10); } } /* Get device signature bytes */ else if (ch == 'u') { if (getch() == ' ') { putch(0x14); putch(SIG1); putch(SIG2); putch(SIG3); putch(0x10); } } /* Read oscillator calibration byte */ else if (ch == 'v') { byte_response(0x00); } } /* end of forever loop */ } void putch(char ch) { /* m8 */ while (!(inb(UCSRA) & _BV(UDRE))); outb(UDR,ch); } char getch(void) { /* m8 */ uint32_t count = 0; while(!(inb(UCSRA) & _BV(RXC))) { /* HACKME:: here is a good place to count times*/ count++; if (count > MAX_TIME_COUNT) app_start(); } return (inb(UDR)); } void getNch(uint8_t count) { uint8_t i; for(i=0;i