mor1kx-bemicrocv/ip/altera/ddr3/ddr3_s0_software/sequencer.c

10851 lines
325 KiB
C
Raw Permalink Normal View History

2016-08-04 19:22:38 +02:00
/*
* Copyright Altera Corporation (C) 2012-2014. All rights reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Altera Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sequencer_defines.h"
#include "alt_types.h"
#include "system.h"
#if HPS_HW
#include "sdram_io.h"
#else
#include "io.h"
#endif
#include "sequencer.h"
#include "tclrpt.h"
#include "sequencer_auto.h"
#if HHP_HPS_SIMULATION
#include "hps_controller.h"
#endif
/******************************************************************************
******************************************************************************
** NOTE: Special Rules for Globale Variables **
** **
** All global variables that are explicitly initialized (including **
** explicitly initialized to zero), are only initialized once, during **
** configuration time, and not again on reset. This means that they **
** preserve their current contents across resets, which is needed for some **
** special cases involving communication with external modules. In **
** addition, this avoids paying the price to have the memory initialized, **
** even for zeroed data, provided it is explicitly set to zero in the code, **
** and doesn't rely on implicit initialization. **
******************************************************************************
******************************************************************************/
#ifndef ARMCOMPILER
#if ARRIAV
// Temporary workaround to place the initial stack pointer at a safe offset from end
#define STRINGIFY(s) STRINGIFY_STR(s)
#define STRINGIFY_STR(s) #s
asm(".global __alt_stack_pointer");
asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
#endif
#if CYCLONEV
// Temporary workaround to place the initial stack pointer at a safe offset from end
#define STRINGIFY(s) STRINGIFY_STR(s)
#define STRINGIFY_STR(s) #s
asm(".global __alt_stack_pointer");
asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
#endif
#endif
#if ENABLE_PRINTF_LOG
#include <stdio.h>
#include <string.h>
typedef struct {
alt_u32 v;
alt_u32 p;
alt_u32 d;
alt_u32 ps;
} dqs_pos_t;
/*
The parameters that were previously here are now supplied by generation, until the new data manager is working.
*/
struct {
const char *stage;
alt_u32 vfifo_idx;
dqs_pos_t gwrite_pos[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_enable_left_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_enable_right_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_enable_mid[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_wlevel_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_wlevel_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_wlevel_mid[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
alt_32 dq_read_left_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dq_read_right_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dq_write_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dq_write_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dm_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_NUM_DM_PER_WRITE_GROUP];
alt_32 dm_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_NUM_DM_PER_WRITE_GROUP];
} bfm_gbl;
#endif
#if HPS_HW
#include <sdram.h>
#endif // HPS_HW
#if BFM_MODE
#include <stdio.h>
// DPI access function via library
extern long long get_sim_time(void);
typedef struct {
alt_u32 v;
alt_u32 p;
alt_u32 d;
alt_u32 ps;
} dqs_pos_t;
/*
The parameters that were previously here are now supplied by generation, until the new data manager is working.
*/
struct {
FILE *outfp;
int bfm_skip_guaranteed_write;
int trk_sample_count;
int trk_long_idle_updates;
int lfifo_margin;
const char *stage;
alt_u32 vfifo_idx;
dqs_pos_t gwrite_pos[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_enable_left_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_enable_right_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_enable_mid[RW_MGR_MEM_IF_READ_DQS_WIDTH];
dqs_pos_t dqs_wlevel_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_wlevel_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
dqs_pos_t dqs_wlevel_mid[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
alt_32 dq_read_left_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dq_read_right_edge[RW_MGR_MEM_IF_READ_DQS_WIDTH][RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 dq_write_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_MEM_DQ_PER_WRITE_DQS];
alt_32 dq_write_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_MEM_DQ_PER_WRITE_DQS];
alt_32 dm_left_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_NUM_DM_PER_WRITE_GROUP];
alt_32 dm_right_edge[RW_MGR_MEM_IF_WRITE_DQS_WIDTH][RW_MGR_NUM_DM_PER_WRITE_GROUP];
} bfm_gbl;
#endif
#if ENABLE_TCL_DEBUG
debug_data_t my_debug_data;
#endif
#define NEWVERSION_RDDESKEW 1
#define NEWVERSION_WRDESKEW 1
#define NEWVERSION_GW 1
#define NEWVERSION_WL 1
#define NEWVERSION_DQSEN 1
// Just to make the debugging code more uniform
#ifndef RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM
#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 0
#endif
#if HALF_RATE
#define HALF_RATE_MODE 1
#else
#define HALF_RATE_MODE 0
#endif
#if QUARTER_RATE
#define QUARTER_RATE_MODE 1
#else
#define QUARTER_RATE_MODE 0
#endif
#define DELTA_D 1
// case:56390
// VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated per DQS. This is always one except:
// AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2
// RLDRAMII x36 and x36w2 where it is 2.
// In 12.0sp1 we set this to 4 for all of the special cases above to keep it simple.
// In 12.0sp2 or 12.1 this should get moved to generation and unified with the same constant used in the phy mgr
#define VFIFO_CONTROL_WIDTH_PER_DQS 1
#if ARRIAV
#if QDRII
#if RW_MGR_MEM_DQ_PER_READ_DQS > 9
#undef VFIFO_CONTROL_WIDTH_PER_DQS
#define VFIFO_CONTROL_WIDTH_PER_DQS 4
#endif
#endif // protocol check
#if RLDRAMII
#if RW_MGR_MEM_DQ_PER_READ_DQS > 9
#undef VFIFO_CONTROL_WIDTH_PER_DQS
#define VFIFO_CONTROL_WIDTH_PER_DQS 2
#endif
#endif // protocol check
#endif // family check
// In order to reduce ROM size, most of the selectable calibration steps are
// decided at compile time based on the user's calibration mode selection,
// as captured by the STATIC_CALIB_STEPS selection below.
//
// However, to support simulation-time selection of fast simulation mode, where
// we skip everything except the bare minimum, we need a few of the steps to
// be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
// check, which is based on the rtl-supplied value, or we dynamically compute the
// value to use based on the dynamically-chosen calibration mode
#if QDRII
#define BTFLD_FMT "%llx"
#else
#define BTFLD_FMT "%lx"
#endif
#if BFM_MODE // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// TODO: should make this configurable; could even have it read from config file or env at startup
#define DLEVEL 2
// space around comma is required for varargs macro to remove comma if args is empty
#define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) printf("[%lld] SEQ.C: " fmt "\n" , get_sim_time(), ## args)
#define IPRINT(fmt, args...) printf("[%lld] SEQ.C: " fmt "\n" , get_sim_time(), ## args)
#define BFM_GBL_SET(field,value) bfm_gbl.field = value
#define BFM_GBL_GET(field) bfm_gbl.field
#define BFM_STAGE(label) BFM_GBL_SET(stage,label)
#define BFM_INC_VFIFO bfm_gbl.vfifo_idx = (bfm_gbl.vfifo_idx + 1) % VFIFO_SIZE
#define COV(label) getpid() /* no-op marker for coverage */
#elif ENABLE_PRINTF_LOG // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#define DLEVEL 2
void wait_printf_queue()
{
alt_u32 next_entry;
while (debug_printf_output->count == PRINTF_READ_BUFFER_FIFO_WORDS || debug_printf_output->slave_lock != 0)
{}
debug_printf_output->master_lock = 1;
next_entry = (debug_printf_output->head + debug_printf_output->count) % PRINTF_READ_BUFFER_FIFO_WORDS;
strcpy((char*)(&(debug_printf_output->read_buffer[next_entry])), (char*)(debug_printf_output->active_word));
debug_printf_output->count++;
debug_printf_output->master_lock = 0;
}
#define DPRINT(level, fmt, args...) \
if (DLEVEL >= (level)) { \
snprintf((char*)(debug_printf_output->active_word), PRINTF_READ_BUFFER_SIZE*4, "DEBUG:" fmt, ## args); \
wait_printf_queue(); \
}
#define IPRINT(fmt, args...) \
snprintf((char*)(debug_printf_output->active_word), PRINTF_READ_BUFFER_SIZE*4, "INFO:" fmt, ## args); \
wait_printf_queue();
#define BFM_GBL_SET(field,value) bfm_gbl.field = value
#define BFM_GBL_GET(field) bfm_gbl.field
#define BFM_STAGE(label) BFM_GBL_SET(stage,label)
#define BFM_INC_VFIFO bfm_gbl.vfifo_idx = (bfm_gbl.vfifo_idx + 1) % VFIFO_SIZE
#define COV(label)
#elif HPS_HW // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// For HPS running on actual hardware
#define DLEVEL 0
#ifdef HPS_HW_SERIAL_SUPPORT
// space around comma is required for varargs macro to remove comma if args is empty
#define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) printf("SEQ.C: " fmt "\n" , ## args)
#define IPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args)
#if RUNTIME_CAL_REPORT
#define RPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args)
#endif
#else
#define DPRINT(level, fmt, args...)
#define IPRINT(fmt, args...)
#endif
#define BFM_GBL_SET(field,value)
#define BFM_GBL_GET(field) ((long unsigned int)0)
#define BFM_STAGE(stage)
#define BFM_INC_VFIFO
#define COV(label)
#else // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-----------------------------------
// Default mode
#define DPRINT(level, fmt, args...)
#define IPRINT(fmt, args...)
#define BFM_GBL_SET(field,value)
#define BFM_GBL_GET(field) 0
#define BFM_STAGE(stage)
#define BFM_INC_VFIFO
#define COV(label)
#endif // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------------------------------
#if BFM_MODE
#define TRACE_FUNC(fmt, args...) DPRINT(1, "%s[%ld]: " fmt, __func__, __LINE__ , ## args)
#else
#define TRACE_FUNC(fmt, args...) DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args)
#endif
#if BFM_MODE
// In BFM mode, we do full calibration as for real-rtl
#define DYNAMIC_CALIB_STEPS STATIC_CALIB_STEPS
#else
#define DYNAMIC_CALIB_STEPS (dyn_calib_steps)
#endif
#if STATIC_SIM_FILESET
#define STATIC_IN_RTL_SIM CALIB_IN_RTL_SIM
#else
#define STATIC_IN_RTL_SIM 0
#endif
#if STATIC_SKIP_MEM_INIT
#define STATIC_SKIP_DELAY_LOOPS CALIB_SKIP_DELAY_LOOPS
#else
#define STATIC_SKIP_DELAY_LOOPS 0
#endif
#if STATIC_FULL_CALIBRATION
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | STATIC_SKIP_DELAY_LOOPS)
#elif STATIC_QUICK_CALIBRATION
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | CALIB_SKIP_WRITES | CALIB_SKIP_DELAY_SWEEPS | CALIB_SKIP_ALL_BITS_CHK | STATIC_SKIP_DELAY_LOOPS)
#elif STATIC_SKIP_CALIBRATION
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | CALIB_SKIP_WRITES | CALIB_SKIP_WLEVEL | CALIB_SKIP_LFIFO | CALIB_SKIP_VFIFO | CALIB_SKIP_DELAY_SWEEPS | CALIB_SKIP_ALL_BITS_CHK | STATIC_SKIP_DELAY_LOOPS)
#else
#undef STATIC_CALIB_STEPS
// This should force an error
#endif
// calibration steps requested by the rtl
alt_u16 dyn_calib_steps = 0;
// To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
// instead of static, we use boolean logic to select between
// non-skip and skip values
//
// The mask is set to include all bits when not-skipping, but is
// zero when skipping
alt_u16 skip_delay_mask = 0; // mask off bits when skipping/not-skipping
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
// TODO: The skip group strategy is completely missing
gbl_t *gbl = 0;
param_t *param = 0;
alt_u32 curr_shadow_reg = 0;
#if ENABLE_DELAY_CHAIN_WRITE
alt_u32 vfifo_settings[RW_MGR_MEM_IF_READ_DQS_WIDTH];
#endif // ENABLE_DELAY_CHAIN_WRITE
#if ENABLE_NON_DESTRUCTIVE_CALIB
// Technically, the use of these variables could be separated from ENABLE_NON_DESTRUCTIVE_CALIB
// but currently they are part of a single feature which is not fully validated, so we're keeping
// them together
// These variables can be modified by external rtl modules, and hence are "volatile"
volatile alt_u32 no_init = 0;
volatile alt_u32 abort_cal = 0;
#endif
alt_u32 rw_mgr_mem_calibrate_write_test (alt_u32 rank_bgn, alt_u32 write_group, alt_u32 use_dm, alt_u32 all_correct, t_btfld *bit_chk, alt_u32 all_ranks);
#if ENABLE_BRINGUP_DEBUGGING
#define DI_BUFFER_DEBUG_SIZE 64
alt_u8 di_buf_gbl[DI_BUFFER_DEBUG_SIZE*4] = {0};
void load_di_buf_gbl(void)
{
int i;
int j;
for (i = 0; i < DI_BUFFER_DEBUG_SIZE; i++) {
alt_u32 val = IORD_32DIRECT(RW_MGR_DI_BASE + i*4, 0);
for (j = 0; j < 4; j++) {
alt_u8 byte = (val >> (8*j)) & 0xff;
di_buf_gbl[i*4 + j] = byte;
}
}
}
#endif /* ENABLE_BRINGUP_DEBUGGING */
#if ENABLE_DQSEN_SWEEP
void init_di_buffer(void)
{
alt_u32 i;
debug_data->di_report.flags = 0;
debug_data->di_report.cur_samples = 0;
for (i = 0; i < NUM_DI_SAMPLE; i++)
{
debug_data->di_report.di_buffer[i].bit_chk = 0;
debug_data->di_report.di_buffer[i].delay = 0;
debug_data->di_report.di_buffer[i].d = 0;
debug_data->di_report.di_buffer[i].v = 0;
debug_data->di_report.di_buffer[i].p = 0;
debug_data->di_report.di_buffer[i].di_buffer_0a = 0;
debug_data->di_report.di_buffer[i].di_buffer_0b = 0;
debug_data->di_report.di_buffer[i].di_buffer_1a = 0;
debug_data->di_report.di_buffer[i].di_buffer_1b = 0;
debug_data->di_report.di_buffer[i].di_buffer_2a = 0;
debug_data->di_report.di_buffer[i].di_buffer_2b = 0;
debug_data->di_report.di_buffer[i].di_buffer_3a = 0;
debug_data->di_report.di_buffer[i].di_buffer_3b = 0;
debug_data->di_report.di_buffer[i].di_buffer_4a = 0;
debug_data->di_report.di_buffer[i].di_buffer_4b = 0;
}
}
inline void flag_di_buffer_ready()
{
debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
}
inline void flag_di_buffer_done()
{
debug_data->di_report.flags |= DI_REPORT_FLAGS_READY;
debug_data->di_report.flags |= DI_REPORT_FLAGS_DONE;
}
void wait_di_buffer(void)
{
if (debug_data->di_report.cur_samples == NUM_DI_SAMPLE)
{
flag_di_buffer_ready();
while (debug_data->di_report.cur_samples != 0)
{
}
debug_data->di_report.flags = 0;
}
}
void sample_di_data(alt_u32 bit_chk, alt_u32 delay, alt_u32 d, alt_u32 v, alt_u32 p)
{
alt_u32 k;
alt_u32 di_status_word;
alt_u32 di_word_avail;
alt_u32 di_write_to_read_ratio;
alt_u32 di_write_to_read_ratio_2_exp;
wait_di_buffer();
k = debug_data->di_report.cur_samples;
debug_data->di_report.di_buffer[k].bit_chk = bit_chk;
debug_data->di_report.di_buffer[k].delay = delay;
debug_data->di_report.di_buffer[k].d = d;
debug_data->di_report.di_buffer[k].v = v;
debug_data->di_report.di_buffer[k].p = p;
di_status_word = IORD_32DIRECT(BASE_RW_MGR + 8, 0);
di_word_avail = di_status_word & 0x0000FFFF;
di_write_to_read_ratio = (di_status_word & 0x00FF0000) >> 16;
di_write_to_read_ratio_2_exp = (di_status_word & 0xFF000000) >> 24;
debug_data->di_report.di_buffer[k].di_buffer_0a = IORD_32DIRECT(BASE_RW_MGR + 16 + 0*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_0b = IORD_32DIRECT(BASE_RW_MGR + 16 + 1*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_1a = IORD_32DIRECT(BASE_RW_MGR + 16 + 2*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_1b = IORD_32DIRECT(BASE_RW_MGR + 16 + 3*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_2a = IORD_32DIRECT(BASE_RW_MGR + 16 + 4*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_2b = IORD_32DIRECT(BASE_RW_MGR + 16 + 5*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_3a = IORD_32DIRECT(BASE_RW_MGR + 16 + 6*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_3b = IORD_32DIRECT(BASE_RW_MGR + 16 + 7*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_4a = IORD_32DIRECT(BASE_RW_MGR + 16 + 8*4, 0);
debug_data->di_report.di_buffer[k].di_buffer_4b = IORD_32DIRECT(BASE_RW_MGR + 16 + 9*4, 0);
debug_data->di_report.cur_samples = debug_data->di_report.cur_samples + 1;
}
#endif
// This (TEST_SIZE) is used to test handling of large roms, to make
// sure we are sizing things correctly
// Note, the initialized data takes up twice the space in rom, since
// there needs to be a copy with the initial value and a copy that is
// written too, since on soft-reset, it needs to have the initial values
// without reloading the memory from external sources
// #define TEST_SIZE (6*1024)
#ifdef TEST_SIZE
#define PRE_POST_TEST_SIZE 3
unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3};
unsigned int test_size_mem[TEST_SIZE/sizeof(unsigned int)] = { 100, 200, 300 };
unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = {10, 20, 30};
void write_test_mem(void)
{
int i;
for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
pre_test_size_mem[i] = (i+1)*10;
post_test_size_mem[i] = (i+1);
}
for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++) {
test_size_mem[i] = i;
}
}
int check_test_mem(int start)
{
int i;
for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
if (start) {
if (pre_test_size_mem[i] != (i+1)) {
return 0;
}
if (post_test_size_mem[i] != (i+1)*10) {
return 0;
}
} else {
if (pre_test_size_mem[i] != (i+1)*10) {
return 0;
}
if (post_test_size_mem[i] != (i+1)) {
return 0;
}
}
}
for (i = 0; i < sizeof(test_size_mem)/sizeof(unsigned int); i++) {
if (start) {
if (i < 3) {
if (test_size_mem[i] != (i+1)*100) {
return 0;
}
} else {
if (test_size_mem[i] != 0) {
return 0;
}
}
} else {
if (test_size_mem[i] != i) {
return 0;
}
}
}
return 1;
}
#endif // TEST_SIZE
static void set_failing_group_stage(alt_u32 group, alt_u32 stage, alt_u32 substage)
{
ALTERA_ASSERT(group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Only set the global stage if there was not been any other failing group
if (gbl->error_stage == CAL_STAGE_NIL)
{
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
TCLRPT_SET(debug_summary_report->error_sub_stage, substage);
TCLRPT_SET(debug_summary_report->error_stage, stage);
TCLRPT_SET(debug_summary_report->error_group, group);
}
// Always set the group specific errors
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][group].error_stage, stage);
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][group].error_sub_stage, substage);
}
static inline void reg_file_set_group(alt_u32 set_group)
{
// Read the current group and stage
alt_u32 cur_stage_group = IORD_32DIRECT (REG_FILE_CUR_STAGE, 0);
// Clear the group
cur_stage_group &= 0x0000FFFF;
// Set the group
cur_stage_group |= (set_group << 16);
// Write the data back
IOWR_32DIRECT (REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline void reg_file_set_stage(alt_u32 set_stage)
{
// Read the current group and stage
alt_u32 cur_stage_group = IORD_32DIRECT (REG_FILE_CUR_STAGE, 0);
// Clear the stage and substage
cur_stage_group &= 0xFFFF0000;
// Set the stage
cur_stage_group |= (set_stage & 0x000000FF);
// Write the data back
IOWR_32DIRECT (REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline void reg_file_set_sub_stage(alt_u32 set_sub_stage)
{
// Read the current group and stage
alt_u32 cur_stage_group = IORD_32DIRECT (REG_FILE_CUR_STAGE, 0);
// Clear the substage
cur_stage_group &= 0xFFFF00FF;
// Set the sub stage
cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
// Write the data back
IOWR_32DIRECT (REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline alt_u32 is_write_group_enabled_for_dm(alt_u32 write_group)
{
#if DM_PINS_ENABLED
#if RLDRAMII
alt_32 decrement_counter = write_group + 1;
while (decrement_counter > 0)
{
decrement_counter -= RW_MGR_MEM_IF_WRITE_DQS_WIDTH/RW_MGR_MEM_DATA_MASK_WIDTH;
}
if (decrement_counter == 0)
{
return 1;
}
else
{
return 0;
}
#else
return 1;
#endif
#else
return 0;
#endif
}
static inline void select_curr_shadow_reg_using_rank(alt_u32 rank)
{
#if USE_SHADOW_REGS
//USER Map the rank to its shadow reg and set the global variable
curr_shadow_reg = (rank >> (NUM_RANKS_PER_SHADOW_REG - 1));
#endif
}
void initialize(void)
{
TRACE_FUNC();
//USER calibration has control over path to memory
#if HARD_PHY
// In Hard PHY this is a 2-bit control:
// 0: AFI Mux Select
// 1: DDIO Mux Select
IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 0x3);
#else
IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 1);
#endif
//USER memory clock is not stable we begin initialization
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 0);
//USER calibration status all set to zero
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, 0);
IOWR_32DIRECT (PHY_MGR_CAL_DEBUG_INFO, 0, 0);
if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
param->read_correct_mask_vg = ((t_btfld)1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->write_correct_mask_vg = ((t_btfld)1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->read_correct_mask = ((t_btfld)1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = ((t_btfld)1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
param->dm_correct_mask = ((t_btfld)1 << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) - 1;
}
}
#if MRS_MIRROR_PING_PONG_ATSO
// This code is specific to the ATSO setup. There are two ways to set
// the cs/odt mask:
// 1. the normal way (set_rank_and_odt_mask)
// This method will be used in general. The behavior will be to unmask
// BOTH CS (i.e. broadcast to both sides as if calibrating one large interface).
// 2. this function
// This method will be used for MRS settings only. This allows us to do settings
// on a per-side basis. This is needed because Slot 1 Rank 1 needs a mirrored MRS.
// This function is specific to our setup ONLY.
void set_rank_and_odt_mask_for_ping_pong_atso(alt_u32 side, alt_u32 odt_mode)
{
alt_u32 odt_mask_0 = 0;
alt_u32 odt_mask_1 = 0;
alt_u32 cs_and_odt_mask;
if(odt_mode == RW_MGR_ODT_MODE_READ_WRITE)
{
//USER 1 Rank
//USER Read: ODT = 0
//USER Write: ODT = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
}
else
{
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
cs_and_odt_mask =
(0xFF & ~(1 << side)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
#endif
#if DDR3
void set_rank_and_odt_mask(alt_u32 rank, alt_u32 odt_mode)
{
alt_u32 odt_mask_0 = 0;
alt_u32 odt_mask_1 = 0;
alt_u32 cs_and_odt_mask;
if(odt_mode == RW_MGR_ODT_MODE_READ_WRITE)
{
#if USE_SHADOW_REGS
alt_u32 rank_one_hot = (0xFF & (1 << rank));
select_curr_shadow_reg_using_rank(rank);
//USER Assert afi_rrank and afi_wrank. These signals ultimately drive
//USER the read/write rank select signals which select the shadow register.
IOWR_32DIRECT (RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
#endif
if ( LRDIMM ) {
// USER LRDIMMs have two cases to consider: single-slot and dual-slot.
// USER In single-slot, assert ODT for write only.
// USER In dual-slot, assert ODT for both slots for write,
// USER and on the opposite slot only for reads.
// USER
// USER Further complicating this is that both DIMMs have either 1 or 2 ODT
// USER inputs, which do the same thing (only one is actually required).
if ((RW_MGR_MEM_CHIP_SELECT_WIDTH/RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) {
// USER Single-slot case
if (RW_MGR_MEM_ODT_WIDTH == 1) {
// USER Read = 0, Write = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_ODT_WIDTH == 2) {
// USER Read = 00, Write = 11
odt_mask_0 = 0x0;
odt_mask_1 = 0x3;
}
} else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH/RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
// USER Dual-slot case
if (RW_MGR_MEM_ODT_WIDTH == 2) {
// USER Read: asserted for opposite slot, Write: asserted for both
odt_mask_0 = (rank < 2) ? 0x2 : 0x1;
odt_mask_1 = 0x3;
} else if (RW_MGR_MEM_ODT_WIDTH == 4) {
// USER Read: asserted for opposite slot, Write: asserted for both
odt_mask_0 = (rank < 2) ? 0xC : 0x3;
odt_mask_1 = 0xF;
}
}
} else if(RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
//USER 1 Rank
//USER Read: ODT = 0
//USER Write: ODT = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if(RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER 2 Ranks
if(RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
(RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
//USER - Dual-Slot , Single-Rank (1 chip-select per DIMM)
//USER OR
//USER - RDIMM, 4 total CS (2 CS per DIMM) means 2 DIMM
//USER Since MEM_NUMBER_OF_RANKS is 2 they are both single rank
//USER with 2 CS each (special for RDIMM)
//USER Read: Turn on ODT on the opposite rank
//USER Write: Turn on ODT on all ranks
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
//USER - Single-Slot , Dual-rank DIMMs (2 chip-selects per DIMM)
//USER Read: Turn on ODT off on all ranks
//USER Write: Turn on ODT on active rank
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
} else {
//USER 4 Ranks
//USER Read:
//USER ----------+-----------------------+
//USER | |
//USER | ODT |
//USER Read From +-----------------------+
//USER Rank | 3 | 2 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER 0 | 0 | 1 | 0 | 0 |
//USER 1 | 1 | 0 | 0 | 0 |
//USER 2 | 0 | 0 | 0 | 1 |
//USER 3 | 0 | 0 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER
//USER Write:
//USER ----------+-----------------------+
//USER | |
//USER | ODT |
//USER Write To +-----------------------+
//USER Rank | 3 | 2 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER 0 | 0 | 1 | 0 | 1 |
//USER 1 | 1 | 0 | 1 | 0 |
//USER 2 | 0 | 1 | 0 | 1 |
//USER 3 | 1 | 0 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
switch(rank)
{
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
}
}
else
{
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
#if ADVANCED_ODT_CONTROL
// odt_mask_0 = read
// odt_mask_1 = write
odt_mask_0 = (CFG_READ_ODT_CHIP >> (RW_MGR_MEM_ODT_WIDTH * rank));
odt_mask_1 = (CFG_WRITE_ODT_CHIP >> (RW_MGR_MEM_ODT_WIDTH * rank));
odt_mask_0 &= ((1 << RW_MGR_MEM_ODT_WIDTH) - 1);
odt_mask_1 &= ((1 << RW_MGR_MEM_ODT_WIDTH) - 1);
#endif
#if MRS_MIRROR_PING_PONG_ATSO
// See set_cs_and_odt_mask_for_ping_pong_atso
cs_and_odt_mask =
(0xFC) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
#else
if(RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 && RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER See RDIMM special case above
cs_and_odt_mask =
(0xFF & ~(1 << (2*rank))) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
} else if (LRDIMM) {
#if LRDIMM
// USER LRDIMM special cases - When RM=2, CS[2] is remapped to A[16] so skip it,
// USER and when RM=4, CS[3:2] are remapped to A[17:16] so skip them both.
alt_u32 lrdimm_rank = 0;
alt_u32 lrdimm_rank_mask = 0;
//USER When rank multiplication is active, the remapped CS pins must be forced low
//USER instead of high for proper targetted RTT_NOM programming.
if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 2) {
// USER Mask = CS[5:0] = 011011
lrdimm_rank_mask = (0x3 | (0x3 << 3));
} else if (LRDIMM_RANK_MULTIPLICATION_FACTOR == 4) {
// USER Mask = CS[7:0] = 00110011
lrdimm_rank_mask = (0x3 | (0x3 << 4));
}
// USER Handle LRDIMM cases where Rank multiplication may be active
if (((RW_MGR_MEM_CHIP_SELECT_WIDTH/RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1)) {
// USER Single-DIMM case
lrdimm_rank = ~(1 << rank);
} else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH/RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 2) {
if (rank < (RW_MGR_MEM_NUMBER_OF_RANKS >> 1)) {
// USER Dual-DIMM case, accessing first slot
lrdimm_rank = ~(1 << rank);
} else {
// USER Dual-DIMM case, accessing second slot
lrdimm_rank = ~(1 << (rank + RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM - (RW_MGR_MEM_NUMBER_OF_RANKS>>1)));
}
}
cs_and_odt_mask =
(lrdimm_rank_mask & lrdimm_rank) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
#endif // LRDIMM
} else {
cs_and_odt_mask =
(0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
}
#endif
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
#else
#if DDR2
void set_rank_and_odt_mask(alt_u32 rank, alt_u32 odt_mode)
{
alt_u32 odt_mask_0 = 0;
alt_u32 odt_mask_1 = 0;
alt_u32 cs_and_odt_mask;
if(odt_mode == RW_MGR_ODT_MODE_READ_WRITE)
{
if(RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
//USER 1 Rank
//USER Read: ODT = 0
//USER Write: ODT = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if(RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER 2 Ranks
if(RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
(RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
//USER - Dual-Slot , Single-Rank (1 chip-select per DIMM)
//USER OR
//USER - RDIMM, 4 total CS (2 CS per DIMM) means 2 DIMM
//USER Since MEM_NUMBER_OF_RANKS is 2 they are both single rank
//USER with 2 CS each (special for RDIMM)
//USER Read/Write: Turn on ODT on the opposite rank
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3 & ~(1 << rank);
} else {
//USER - Single-Slot , Dual-rank DIMMs (2 chip-selects per DIMM)
//USER Read: Turn on ODT off on all ranks
//USER Write: Turn on ODT on active rank
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
} else {
//USER 4 Ranks
//USER Read/Write:
//USER -----------+-----------------------+
//USER | |
//USER | ODT |
//USER Read/Write | |
//USER From +-----------------------+
//USER Rank | 3 | 2 | 1 | 0 |
//USER -----------+-----+-----+-----+-----+
//USER 0 | 0 | 1 | 0 | 0 |
//USER 1 | 1 | 0 | 0 | 0 |
//USER 2 | 0 | 0 | 0 | 1 |
//USER 3 | 0 | 0 | 1 | 0 |
//USER -----------+-----+-----+-----+-----+
switch(rank)
{
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x4;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0x8;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x1;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0x2;
break;
}
}
}
else
{
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
if(RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 && RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER See RDIMM/LRDIMM special case above
cs_and_odt_mask =
(0xFF & ~(1 << (2*rank))) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
} else {
cs_and_odt_mask =
(0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
}
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
#else // QDRII and RLDRAMx
void set_rank_and_odt_mask(alt_u32 rank, alt_u32 odt_mode)
{
alt_u32 cs_and_odt_mask =
(0xFF & ~(1 << rank));
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
#endif
#endif
//USER Given a rank, select the set of shadow registers that is responsible for the
//USER delays of such rank, so that subsequent SCC updates will go to those shadow
//USER registers.
void select_shadow_regs_for_update (alt_u32 rank, alt_u32 group, alt_u32 update_scan_chains)
{
#if USE_SHADOW_REGS
alt_u32 rank_one_hot = (0xFF & (1 << rank));
//USER Assert afi_rrank and afi_wrank. These signals ultimately drive
//USER the read/write rank select signals which select the shadow register.
IOWR_32DIRECT (RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
//USER Cause the SCC manager to switch its register file, which is used as
//USER local cache of the various dtap/ptap settings. There's one register file
//USER per shadow register set.
IOWR_32DIRECT (SCC_MGR_ACTIVE_RANK, 0, rank_one_hot);
if (update_scan_chains) {
alt_u32 i;
//USER On the read side, a memory read is required because the read rank
//USER select signal (as well as the postamble delay chain settings) is clocked
//USER into the periphery by the postamble signal. Simply asserting afi_rrank
//USER is not enough. If update_scc_regfile is not set, we assume there'll be a
//USER subsequent read that'll handle this.
for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; ++i) {
//USER The dummy read can go to any non-skipped rank.
//USER Skipped ranks are uninitialized and their banks are un-activated.
//USER Accessing skipped ranks can lead to bad behavior.
if (! param->skip_ranks[i]) {
set_rank_and_odt_mask(i, RW_MGR_ODT_MODE_READ_WRITE);
// must re-assert afi_wrank/afi_rrank prior to issuing read
// because set_rank_and_odt_mask may have changed the signals.
IOWR_32DIRECT (RW_MGR_SET_ACTIVE_RANK, 0, rank_one_hot);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x10);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x10);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
IOWR_32DIRECT (RW_MGR_RUN_ALL_GROUPS, 0, __RW_MGR_READ_B2B);
//USER The dummy read above may cause the DQS enable signal to be stuck high.
//USER The following corrects this.
IOWR_32DIRECT (RW_MGR_RUN_ALL_GROUPS, 0, __RW_MGR_CLEAR_DQS_ENABLE);
set_rank_and_odt_mask(i, RW_MGR_ODT_MODE_OFF);
break;
}
}
//USER Reset the fifos to get pointers to known state
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//USER On the write side the afi_wrank signal eventually propagates to the I/O
//USER through the write datapath. We need to make sure we wait long enough for
//USER this to happen. The operations above should be enough, hence no extra delay
//USER inserted here.
//USER Make sure the data in the I/O scan chains are in-sync with the register
//USER file inside the SCC manager. If we don't do this, a subsequent SCC_UPDATE
//USER may cause stale data for the other shadow register to be loaded. This must
//USER be done for every scan chain of the current group. Note that in shadow
//USER register mode, the SCC_UPDATE signal is per-group.
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, group);
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, group);
IOWR_32DIRECT (SCC_MGR_DQS_IO_ENA, 0, 0);
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
IOWR_32DIRECT (SCC_MGR_DQ_ENA, 0, i);
}
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
IOWR_32DIRECT (SCC_MGR_DM_ENA, 0, i);
}
}
//USER Map the rank to its shadow reg
select_curr_shadow_reg_using_rank(rank);
#endif
}
#if HHP_HPS
void scc_mgr_initialize(void)
{
// Clear register file for HPS
// 16 (2^4) is the size of the full register file in the scc mgr:
// RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + MEM_IF_READ_DQS_WIDTH - 1) + 1;
alt_u32 i;
for (i = 0; i < 16; i++) {
DPRINT(1, "Clearing SCC RFILE index %lu", i);
IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0);
}
}
#endif
inline void scc_mgr_set_dqs_bus_in_delay(alt_u32 read_group, alt_u32 delay)
{
ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_IN_DELAY(read_group, delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][read_group].dqs_bus_in_delay, delay);
}
static inline void scc_mgr_set_dqs_io_in_delay(alt_u32 write_group, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_IO_IN_DELAY(delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqs_io_in_delay, delay);
}
static inline void scc_mgr_set_dqs_en_phase(alt_u32 read_group, alt_u32 phase)
{
ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_EN_PHASE(read_group, phase);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][read_group].dqs_en_phase, phase);
}
void scc_mgr_set_dqs_en_phase_all_ranks (alt_u32 read_group, alt_u32 phase)
{
alt_u32 r;
alt_u32 update_scan_chains;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
//USER although the h/w doesn't support different phases per shadow register,
//USER for simplicity our scc manager modeling keeps different phase settings per
//USER shadow reg, and it's important for us to keep them in sync to match h/w.
//USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
select_shadow_regs_for_update(r, read_group, update_scan_chains);
scc_mgr_set_dqs_en_phase(read_group, phase);
if (update_scan_chains) {
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
}
static inline void scc_mgr_set_dqdqs_output_phase(alt_u32 write_group, alt_u32 phase)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
#if CALIBRATE_BIT_SLIPS
alt_u32 num_fr_slips = 0;
while (phase > IO_DQDQS_OUT_PHASE_MAX) {
phase -= IO_DLL_CHAIN_LENGTH;
num_fr_slips++;
}
IOWR_32DIRECT (PHY_MGR_FR_SHIFT, write_group*4, num_fr_slips);
#endif
// Load the setting in the SCC manager
WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqdqs_out_phase, phase);
}
void scc_mgr_set_dqdqs_output_phase_all_ranks (alt_u32 write_group, alt_u32 phase)
{
alt_u32 r;
alt_u32 update_scan_chains;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
//USER although the h/w doesn't support different phases per shadow register,
//USER for simplicity our scc manager modeling keeps different phase settings per
//USER shadow reg, and it's important for us to keep them in sync to match h/w.
//USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
select_shadow_regs_for_update(r, write_group, update_scan_chains);
scc_mgr_set_dqdqs_output_phase(write_group, phase);
if (update_scan_chains) {
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, write_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
}
static inline void scc_mgr_set_dqs_en_delay(alt_u32 read_group, alt_u32 delay)
{
ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_EN_DELAY(read_group, delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][read_group].dqs_en_delay, delay);
}
void scc_mgr_set_dqs_en_delay_all_ranks (alt_u32 read_group, alt_u32 delay)
{
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, read_group, 0);
scc_mgr_set_dqs_en_delay(read_group, delay);
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, read_group);
#if !USE_SHADOW_REGS
// In shadow register mode, the T11 settings are stored in registers
// in the core, which are updated by the DQS_ENA signals. Not issuing
// the SCC_MGR_UPD command allows us to save lots of rank switching
// overhead, by calling select_shadow_regs_for_update with update_scan_chains
// set to 0.
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
#endif
}
}
static void scc_mgr_set_oct_out1_delay(alt_u32 write_group, alt_u32 delay)
{
alt_u32 read_group;
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Load the setting in the SCC manager
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be set multiple times.
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
WRITE_SCC_OCT_OUT1_DELAY(read_group, delay);
}
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].oct_out_delay1, delay);
}
static void scc_mgr_set_oct_out2_delay(alt_u32 write_group, alt_u32 delay)
{
alt_u32 read_group;
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Load the setting in the SCC manager
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be set multiple times.
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
WRITE_SCC_OCT_OUT2_DELAY(read_group, delay);
}
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].oct_out_delay2, delay);
}
static inline void scc_mgr_set_dqs_bypass(alt_u32 write_group, alt_u32 bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DQS_BYPASS(write_group, bypass);
}
inline void scc_mgr_set_dq_out1_delay(alt_u32 write_group, alt_u32 dq_in_group, alt_u32 delay)
{
#if ENABLE_TCL_DEBUG || ENABLE_ASSERT
alt_u32 dq = write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + dq_in_group;
#endif
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dq_settings[curr_shadow_reg][dq].dq_out_delay1, delay);
}
inline void scc_mgr_set_dq_out2_delay(alt_u32 write_group, alt_u32 dq_in_group, alt_u32 delay)
{
#if ENABLE_TCL_DEBUG || ENABLE_ASSERT
alt_u32 dq = write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + dq_in_group;
#endif
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dq_settings[curr_shadow_reg][dq].dq_out_delay2, delay);
}
inline void scc_mgr_set_dq_in_delay(alt_u32 write_group, alt_u32 dq_in_group, alt_u32 delay)
{
#if ENABLE_TCL_DEBUG || ENABLE_ASSERT
alt_u32 dq = write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + dq_in_group;
#endif
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dq_settings[curr_shadow_reg][dq].dq_in_delay, delay);
}
static inline void scc_mgr_set_dq_bypass(alt_u32 write_group, alt_u32 dq_in_group, alt_u32 bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DQ_BYPASS(dq_in_group, bypass);
}
static inline void scc_mgr_set_rfifo_mode(alt_u32 write_group, alt_u32 dq_in_group, alt_u32 mode)
{
// Load the setting in the SCC manager
WRITE_SCC_RFIFO_MODE(dq_in_group, mode);
}
static inline void scc_mgr_set_hhp_extras(void)
{
// Load the fixed setting in the SCC manager
// bits: 0:0 = 1'b1 - dqs bypass
// bits: 1:1 = 1'b1 - dq bypass
// bits: 4:2 = 3'b001 - rfifo_mode
// bits: 6:5 = 2'b01 - rfifo clock_select
// bits: 7:7 = 1'b0 - separate gating from ungating setting
// bits: 8:8 = 1'b0 - separate OE from Output delay setting
alt_u32 value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
WRITE_SCC_HHP_EXTRAS(value);
}
static inline void scc_mgr_set_hhp_dqse_map(void)
{
// Load the fixed setting in the SCC manager
WRITE_SCC_HHP_DQSE_MAP(0);
}
static inline void scc_mgr_set_dqs_out1_delay(alt_u32 write_group, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqs_out_delay1, delay);
}
static inline void scc_mgr_set_dqs_out2_delay(alt_u32 write_group, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
// Load the setting in the SCC manager
WRITE_SCC_DQS_IO_OUT2_DELAY(delay);
// Make the setting in the TCL report
TCLRPT_SET(debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqs_out_delay2, delay);
}
inline void scc_mgr_set_dm_out1_delay(alt_u32 write_group, alt_u32 dm, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
// Load the setting in the SCC manager
WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
// Make the setting in the TCL report
if (RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP > 0)
{
TCLRPT_SET(debug_cal_report->cal_dm_settings[curr_shadow_reg][write_group][dm].dm_out_delay1, delay);
}
}
inline void scc_mgr_set_dm_out2_delay(alt_u32 write_group, alt_u32 dm, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
// Load the setting in the SCC manager
WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay);
// Make the setting in the TCL report
if (RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP > 0)
{
TCLRPT_SET(debug_cal_report->cal_dm_settings[curr_shadow_reg][write_group][dm].dm_out_delay2, delay);
}
}
static inline void scc_mgr_set_dm_in_delay(alt_u32 write_group, alt_u32 dm, alt_u32 delay)
{
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
// Load the setting in the SCC manager
WRITE_SCC_DM_IO_IN_DELAY(dm, delay);
// Make the setting in the TCL report
if (RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP > 0)
{
TCLRPT_SET(debug_cal_report->cal_dm_settings[curr_shadow_reg][write_group][dm].dm_in_delay, delay);
}
}
static inline void scc_mgr_set_dm_bypass(alt_u32 write_group, alt_u32 dm, alt_u32 bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DM_BYPASS(dm, bypass);
}
//USER Zero all DQS config
// TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
void scc_mgr_zero_all (void)
{
alt_u32 i, r;
//USER Zero all DQS config settings, across all groups and all shadow registers
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
// Strictly speaking this should be called once per group to make
// sure each group's delay chain is refreshed from the SCC register file,
// but since we're resetting all delay chains anyway, we can save some
// runtime by calling select_shadow_regs_for_update just once to switch
// rank.
select_shadow_regs_for_update(r, 0, 1);
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
// The phases actually don't exist on a per-rank basis, but there's
// no harm updating them several times, so let's keep the code simple.
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
#if ARRIAV || CYCLONEV
// av/cv don't have out2
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
#else
scc_mgr_set_oct_out1_delay(i, 0);
scc_mgr_set_oct_out2_delay(i, IO_DQS_OUT_RESERVE);
#endif
}
//USER multicast to all DQS group enables
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, 0xff);
#if USE_SHADOW_REGS
//USER in shadow-register mode, SCC_UPDATE is done on a per-group basis
//USER unless we explicitly ask for a multicast via the group counter
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0xFF);
#endif
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
void scc_set_bypass_mode(alt_u32 write_group, alt_u32 mode)
{
// mode = 0 : Do NOT bypass - Half Rate Mode
// mode = 1 : Bypass - Full Rate Mode
#if !HHP_HPS
alt_u32 i;
#endif
#if HHP_HPS
// only need to set once for all groups, pins, dq, dqs, dm
if (write_group == 0) {
DPRINT(1, "Setting HHP Extras");
scc_mgr_set_hhp_extras();
DPRINT(1, "Done Setting HHP Extras");
}
#endif
#if !HHP_HPS
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
{
scc_mgr_set_dq_bypass(write_group, i, mode);
scc_mgr_set_rfifo_mode(write_group, i, mode);
}
#endif
//USER multicast to all DQ enables
IOWR_32DIRECT (SCC_MGR_DQ_ENA, 0, 0xff);
#if !HHP_HPS
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
{
scc_mgr_set_dm_bypass(write_group, i, mode);
}
#endif
IOWR_32DIRECT (SCC_MGR_DM_ENA, 0, 0xff);
#if !HHP_HPS
scc_mgr_set_dqs_bypass(write_group, mode);
#endif
//USER update current DQS IO enable
IOWR_32DIRECT (SCC_MGR_DQS_IO_ENA, 0, 0);
//USER update the DQS logic
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, write_group);
//USER hit update
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
// Moving up to avoid warnings
void scc_mgr_load_dqs_for_write_group (alt_u32 write_group)
{
alt_u32 read_group;
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be scanned multiple times.
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, read_group);
}
}
void scc_mgr_zero_group (alt_u32 write_group, alt_u32 test_begin, alt_32 out_only)
{
alt_u32 i, r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
//USER Zero all DQ config settings
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
{
scc_mgr_set_dq_out1_delay(write_group, i, 0);
scc_mgr_set_dq_out2_delay(write_group, i, IO_DQ_OUT_RESERVE);
if (!out_only) {
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
}
//USER multicast to all DQ enables
IOWR_32DIRECT (SCC_MGR_DQ_ENA, 0, 0xff);
//USER Zero all DM config settings
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
{
if (!out_only) {
// Do we really need this?
scc_mgr_set_dm_in_delay(write_group, i, 0);
}
scc_mgr_set_dm_out1_delay(write_group, i, 0);
scc_mgr_set_dm_out2_delay(write_group, i, IO_DM_OUT_RESERVE);
}
//USER multicast to all DM enables
IOWR_32DIRECT (SCC_MGR_DM_ENA, 0, 0xff);
//USER zero all DQS io settings
if (!out_only) {
scc_mgr_set_dqs_io_in_delay(write_group, 0);
}
#if ARRIAV || CYCLONEV
// av/cv don't have out2
scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group (write_group);
#else
scc_mgr_set_dqs_out1_delay(write_group, 0);
scc_mgr_set_dqs_out2_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, 0);
scc_mgr_set_oct_out2_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group (write_group);
#endif
//USER multicast to all DQS IO enables (only 1)
IOWR_32DIRECT (SCC_MGR_DQS_IO_ENA, 0, 0);
#if USE_SHADOW_REGS
//USER in shadow-register mode, SCC_UPDATE is done on a per-group basis
//USER unless we explicitly ask for a multicast via the group counter
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0xFF);
#endif
//USER hit update to zero everything
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
//USER load up dqs config settings
void scc_mgr_load_dqs (alt_u32 dqs)
{
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, dqs);
}
//USER load up dqs io config settings
void scc_mgr_load_dqs_io (void)
{
IOWR_32DIRECT (SCC_MGR_DQS_IO_ENA, 0, 0);
}
//USER load up dq config settings
void scc_mgr_load_dq (alt_u32 dq_in_group)
{
IOWR_32DIRECT (SCC_MGR_DQ_ENA, 0, dq_in_group);
}
//USER load up dm config settings
void scc_mgr_load_dm (alt_u32 dm)
{
IOWR_32DIRECT (SCC_MGR_DM_ENA, 0, dm);
}
//USER apply and load a particular input delay for the DQ pins in a group
//USER group_bgn is the index of the first dq pin (in the write group)
void scc_mgr_apply_group_dq_in_delay (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay)
{
alt_u32 i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, delay);
scc_mgr_load_dq (p);
}
}
//USER apply and load a particular output delay for the DQ pins in a group
void scc_mgr_apply_group_dq_out1_delay (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay1)
{
alt_u32 i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i, delay1);
scc_mgr_load_dq (i);
}
}
void scc_mgr_apply_group_dq_out2_delay (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay2)
{
alt_u32 i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out2_delay(write_group, i, delay2);
scc_mgr_load_dq (i);
}
}
//USER apply and load a particular output delay for the DM pins in a group
void scc_mgr_apply_group_dm_out1_delay (alt_u32 write_group, alt_u32 delay1)
{
alt_u32 i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(write_group, i, delay1);
scc_mgr_load_dm (i);
}
}
//USER apply and load delay on both DQS and OCT out1
void scc_mgr_apply_group_dqs_io_and_oct_out1 (alt_u32 write_group, alt_u32 delay)
{
scc_mgr_set_dqs_out1_delay(write_group, delay);
scc_mgr_load_dqs_io ();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group (write_group);
}
//USER apply and load delay on both DQS and OCT out2
void scc_mgr_apply_group_dqs_io_and_oct_out2 (alt_u32 write_group, alt_u32 delay)
{
scc_mgr_set_dqs_out2_delay(write_group, delay);
scc_mgr_load_dqs_io ();
scc_mgr_set_oct_out2_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group (write_group);
}
//USER set delay on both DQS and OCT out1 by incrementally changing
//USER the settings one dtap at a time towards the target value, to avoid
//USER breaking the lock of the DLL/PLL on the memory device.
void scc_mgr_set_group_dqs_io_and_oct_out1_gradual (alt_u32 write_group, alt_u32 delay)
{
alt_u32 d = READ_SCC_DQS_IO_OUT1_DELAY();
while (d > delay) {
--d;
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
}
while (d < delay) {
++d;
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
}
}
//USER set delay on both DQS and OCT out2 by incrementally changing
//USER the settings one dtap at a time towards the target value, to avoid
//USER breaking the lock of the DLL/PLL on the memory device.
void scc_mgr_set_group_dqs_io_and_oct_out2_gradual (alt_u32 write_group, alt_u32 delay)
{
alt_u32 d = READ_SCC_DQS_IO_OUT2_DELAY();
while (d > delay) {
--d;
scc_mgr_apply_group_dqs_io_and_oct_out2 (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
}
while (d < delay) {
++d;
scc_mgr_apply_group_dqs_io_and_oct_out2 (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
}
}
//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
void scc_mgr_apply_group_all_out_delay (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay)
{
//USER dq shift
scc_mgr_apply_group_dq_out1_delay (write_group, group_bgn, delay);
//USER dm shift
scc_mgr_apply_group_dm_out1_delay (write_group, delay);
//USER dqs and oct shift
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, delay);
}
//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
void scc_mgr_apply_group_all_out_delay_all_ranks (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay)
{
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
scc_mgr_apply_group_all_out_delay (write_group, group_bgn, delay);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
void scc_mgr_apply_group_all_out_delay_add (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay)
{
alt_u32 i, p, new_delay;
//USER dq shift
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
new_delay = READ_SCC_DQ_OUT2_DELAY(i);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQ[%lu,%lu]: %lu > %lu => %lu",
__func__, write_group, group_bgn, delay, i, p,
new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dq_out2_delay(write_group, i, new_delay);
scc_mgr_load_dq (i);
}
//USER dm shift
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
new_delay = READ_SCC_DM_IO_OUT2_DELAY(i);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DM[%lu]: %lu > %lu => %lu",
__func__, write_group, group_bgn, delay, i,
new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dm_out2_delay(write_group, i, new_delay);
scc_mgr_load_dm (i);
}
//USER dqs shift
new_delay = READ_SCC_DQS_IO_OUT2_DELAY();
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
__func__, write_group, group_bgn, delay,
new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_dqs_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dqs_out2_delay(write_group, new_delay);
scc_mgr_load_dqs_io ();
//USER oct shift
new_delay = READ_SCC_OCT_OUT2_DELAY(write_group);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
__func__, write_group, group_bgn, delay,
new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_oct_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_oct_out2_delay(write_group, new_delay);
scc_mgr_load_dqs_for_write_group (write_group);
}
//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
void scc_mgr_apply_group_all_out_delay_add_all_ranks (alt_u32 write_group, alt_u32 group_bgn, alt_u32 delay)
{
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
scc_mgr_apply_group_all_out_delay_add (write_group, group_bgn, delay);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
static inline void scc_mgr_spread_out2_delay_all_ranks (alt_u32 write_group, alt_u32 test_bgn)
{
#if STRATIXV || ARRIAVGZ
alt_u32 found;
alt_u32 i;
alt_u32 p;
alt_u32 d;
alt_u32 r;
const alt_u32 delay_step = IO_IO_OUT2_DELAY_MAX/(RW_MGR_MEM_DQ_PER_WRITE_DQS-1); /* we start at zero, so have one less dq to devide among */
TRACE_FUNC("(%lu,%lu)", write_group, test_bgn);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++, d += delay_step) {
DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu r=%lu, i=%lu p=%lu d=%lu",
write_group, r, i, p, d);
scc_mgr_set_dq_out2_delay(write_group, i, d);
scc_mgr_load_dq (i);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
#endif
}
#if DDR3
// optimization used to recover some slots in ddr3 inst_rom
// could be applied to other protocols if we wanted to
void set_jump_as_return(void)
{
// to save space, we replace return with jump to special shared RETURN instruction
// so we set the counter to large value so that we always jump
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0xFF);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN);
}
#endif
// should always use constants as argument to ensure all computations are performed at compile time
static inline void delay_for_n_mem_clocks(const alt_u32 clocks)
{
alt_u32 afi_clocks;
alt_u8 inner;
alt_u8 outer;
alt_u16 c_loop;
TRACE_FUNC("clocks=%lu ... start", clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; /* scale (rounding up) to get afi clocks */
// Note, we don't bother accounting for being off a little bit because of a few extra instructions in outer loops
// Note, the loops have a test at the end, and do the test before the decrement, and so always perform the loop
// 1 time more than the counter value
if (afi_clocks == 0) {
inner = outer = c_loop = 0;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
// rom instructions are structured as follows:
//
// IDLE_LOOP2: jnz cntr0, TARGET_A
// IDLE_LOOP1: jnz cntr1, TARGET_B
// return
//
// so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and TARGET_B is
// set to IDLE_LOOP2 as well
//
// if we have no outer loop, though, then we can use IDLE_LOOP1 only, and set
// TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
//
// a little confusing, but it helps save precious space in the inst_rom and sequencer rom
// and keeps the delays more accurate and reduces overhead
if (afi_clocks <= 0x100) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2);
// hack to get around compiler not being smart enough
if (afi_clocks <= 0x10000) {
// only need to run once
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} else {
do {
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} while (c_loop-- != 0);
}
}
TRACE_FUNC("clocks=%lu ... end", clocks);
}
// should always use constants as argument to ensure all computations are performed at compile time
static inline void delay_for_n_ns(const alt_u32 nanoseconds)
{
TRACE_FUNC("nanoseconds=%lu ... end", nanoseconds);
delay_for_n_mem_clocks((1000*nanoseconds) / (1000000/AFI_CLK_FREQ) * AFI_RATE_RATIO);
}
#if RLDRAM3
// Special routine to recover memory device from illegal state after
// ck/dk relationship is potentially violated.
static inline void recover_mem_device_after_ck_dqs_violation(void)
{
//USER Issue MRS0 command. For some reason this is required once we
//USER violate tCKDK. Without this all subsequent write tests will fail
//USER even with known good delays.
//USER Load MR0
if ( RW_MGR_MEM_NUMBER_OF_RANKS == 1 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 2 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 4 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
//USER Wait MRSC
delay_for_n_mem_clocks(12);
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_QUAD_RANK);
}
else {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
}
//USER Wait MRSC
delay_for_n_mem_clocks(12);
}
#else
// Special routine to recover memory device from illegal state after
// ck/dqs relationship is violated.
static inline void recover_mem_device_after_ck_dqs_violation(void)
{
// Current protocol doesn't require any special recovery
}
#endif
#if (LRDIMM && DDR3)
// Routine to program specific LRDIMM control words.
static void rw_mgr_lrdimm_rc_program(alt_u32 fscw, alt_u32 rc_addr, alt_u32 rc_val)
{
alt_u32 i;
const alt_u32 AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
//USER These values should be dynamically loaded instead of hard-coded
const alt_u32 AC_ADDRESS_POSITION = 0x0;
const alt_u32 AC_BANK_ADDRESS_POSITION = 0xD;
alt_u32 ac_content;
alt_u32 lrdimm_cs_msk = RW_MGR_RANK_NONE;
TRACE_FUNC();
//USER Turn on only CS0 and CS1 for each DIMM.
for (i = 0; i < RW_MGR_MEM_CHIP_SELECT_WIDTH; i+= RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM)
{
lrdimm_cs_msk &= (~(3 << i));
}
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, lrdimm_cs_msk);
// Program the fscw first (RC7), followed by the actual value
for (i = 0; i < 2; i++)
{
alt_u32 addr;
alt_u32 val;
addr = (i == 0) ? 7 : rc_addr;
val = (i == 0) ? fscw : rc_val;
ac_content =
AC_BASE_CONTENT |
//USER Word address
((addr & 0x7) << AC_ADDRESS_POSITION) |
(((addr >> 3) & 0x1) << (AC_BANK_ADDRESS_POSITION + 2)) |
//USER Configuration Word
(((val >> 2) & 0x3) << (AC_BANK_ADDRESS_POSITION)) |
((val & 0x3) << (AC_ADDRESS_POSITION + 3));
//USER Override the AC row with the RDIMM command
IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 + (__RW_MGR_ac_rdimm << 2), ac_content);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
}
// USER The following registers require a delay of tSTAB (6us) for proper functionality.
// USER F0RC2, F0RC10, F0RC11, F1RC8, F1RC11-F1RC15
// USER Note that it is only necessary to wait tSTAB after all of these
// USER control words have been written, not after each one. Only F0RC0-F0RC15
// USER are guaranteed to be written (and in order), but F1* are not so
// USER wait after each.
if ( ((fscw == 0) && ((rc_addr==2) || (rc_addr==10) || (rc_addr==11)))
|| ((fscw == 1) && (rc_addr >= 8)))
{
delay_for_n_ns(6000);
}
}
#endif
#if (RDIMM || LRDIMM) && DDR3
void rw_mgr_rdimm_initialize(void)
{
alt_u32 i;
alt_u32 conf_word;
#if RDIMM
const alt_u32 AC_BASE_CONTENT = __RW_MGR_CONTENT_ac_rdimm;
//USER These values should be dynamically loaded instead of hard-coded
const alt_u32 AC_ADDRESS_POSITION = 0x0;
const alt_u32 AC_BANK_ADDRESS_POSITION = 0xD;
alt_u32 ac_content;
#endif
TRACE_FUNC();
//USER RDIMM registers are programmed by writing 16 configuration words
//USER 1. An RDIMM command is a NOP with all CS asserted
//USER 2. The 4-bit address of the configuration words is
//USER * { mem_ba[2] , mem_a[2] , mem_a[1] , mem_a[0] }
//USER 3. The 4-bit configuration word is
//USER * { mem_ba[1] , mem_ba[0] , mem_a[4] , mem_a[3] }
#if RDIMM
//USER Turn on all ranks
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
#endif
for(i = 0; i < 16; i++)
{
if(i < 8)
{
#if ENABLE_TCL_DEBUG && USE_USER_RDIMM_VALUE
conf_word = (my_debug_data.command_parameters[0] >> (i * 4)) & 0xF;
#else
conf_word = (RDIMM_CONFIG_WORD_LOW >> (i * 4)) & 0xF;
#endif
}
else
{
#if ENABLE_TCL_DEBUG && USE_USER_RDIMM_VALUE
conf_word = (my_debug_data.command_parameters[1] >> ((i - 8) * 4)) & 0xF;
#else
conf_word = (RDIMM_CONFIG_WORD_HIGH >> ((i - 8) * 4)) & 0xF;
#endif
}
#if RDIMM
ac_content =
AC_BASE_CONTENT |
//USER Word address
((i & 0x7) << AC_ADDRESS_POSITION) |
(((i >> 3) & 0x1) << (AC_BANK_ADDRESS_POSITION + 2)) |
//USER Configuration Word
(((conf_word >> 2) & 0x3) << (AC_BANK_ADDRESS_POSITION)) |
((conf_word & 0x3) << (AC_ADDRESS_POSITION + 3));
//USER Override the AC row with the RDIMM command
IOWR_32DIRECT(BASE_RW_MGR, 0x1C00 + (__RW_MGR_ac_rdimm << 2), ac_content);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RDIMM_CMD);
//USER When sending the RC2 or RC10 word, tSTAB time must elapse before the next command
//USER is sent out. tSTAB is currently hard-coded to 6us.
if((i == 2) || (i == 10))
{
//USER tSTAB = 6 us
delay_for_n_ns(6000);
}
#endif
#if LRDIMM
// USER Program configuration word with FSCW set to zero.
rw_mgr_lrdimm_rc_program(0, i, conf_word);
#endif
}
}
#else
void rw_mgr_rdimm_initialize(void) { }
#endif
#if DDR3
#if (ADVANCED_ODT_CONTROL || LRDIMM)
alt_u32 ddr3_mirror_mrs_cmd(alt_u32 bit_vector) {
// This function performs address mirroring of an AC ROM command, which
// requires swapping the following DDR3 bits:
// A[3] <=> A[4]
// A[5] <=> A[6]
// A[7] <=> A[8]
// BA[0] <=>BA[1]
// We assume AC_ROM_ENTRY = {BA[2:0], A[15:0]}.
alt_u32 unchanged_bits;
alt_u32 mask_a;
alt_u32 mask_b;
alt_u32 retval;
unchanged_bits = (~(DDR3_AC_MIRR_MASK | (DDR3_AC_MIRR_MASK << 1))) & bit_vector;
mask_a = DDR3_AC_MIRR_MASK & bit_vector;
mask_b = (DDR3_AC_MIRR_MASK << 1) & bit_vector;
retval = unchanged_bits | (mask_a << 1) | (mask_b >> 1);
return retval;
}
void rtt_change_MRS1_MRS2_NOM_WR (alt_u32 prev_ac_mr , alt_u32 odt_ac_mr, alt_u32 mirr_on, alt_u32 mr_cmd ) {
// This function updates the ODT-specific Mode Register bits (MRS1 or MRS2) in the AC ROM.
// Parameters: prev_ac_mr - Original, *un-mirrored* AC ROM Entry
// odt_ac_mr - ODT bits to update (un-mirrored)
// mirr_on - boolean flag indicating if the regular or mirrored entry is updated
// mr_cmd - Mode register command (only MR1 and MR2 are supported for DDR3)
alt_u32 new_ac_mr;
alt_u32 ac_rom_entry = 0;
alt_u32 ac_rom_mask;
switch (mr_cmd) {
case 1: {
// USER MRS1 = RTT_NOM, RTT_DRV
ac_rom_mask = DDR3_MR1_ODT_MASK;
ac_rom_entry = mirr_on ? (0x1C00 | (__RW_MGR_ac_mrs1_mirr << 2))
: (0x1C00 | (__RW_MGR_ac_mrs1 << 2));
} break;
case 2: {
// USER MRS2 = RTT_WR
ac_rom_mask = DDR3_MR2_ODT_MASK;
ac_rom_entry = mirr_on ? (0x1C00 | (__RW_MGR_ac_mrs2_mirr << 2))
: (0x1C00 | (__RW_MGR_ac_mrs2 << 2));
} break;
}
// USER calculate new AC values and update ROM
new_ac_mr = odt_ac_mr;
new_ac_mr |= (prev_ac_mr & ac_rom_mask);
if (mirr_on) {
new_ac_mr = ddr3_mirror_mrs_cmd(new_ac_mr);
}
IOWR_32DIRECT(BASE_RW_MGR, ac_rom_entry, new_ac_mr);
}
#endif //(ADVANCED_ODT_CONTROL || LRDIMM)
void rw_mgr_mem_initialize (void)
{
alt_u32 r;
#if LRDIMM
alt_u32 rtt_nom;
alt_u32 rtt_drv;
alt_u32 rtt_wr;
#endif // LRDIMM
TRACE_FUNC();
//USER The reset / cke part of initialization is broadcasted to all ranks
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER start with memory RESET activated
//USER tINIT is typically 200us (but can be adjusted in the GUI)
//USER The total number of cycles required for this nested counter structure to
//USER complete is defined by:
//USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
//USER Load counters
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0);
//USER Execute count instruction
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER transition the RESET to high
//USER Wait for 500us
//USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
//USER Load counters
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0);
//USER bring up clock enable
//USER tXRP < 250 ck cycles
delay_for_n_mem_clocks(250);
#ifdef RDIMM
// USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will be
// USER propagated to discrete memory devices
rw_mgr_rdimm_initialize();
#endif
#if LRDIMM
// USER initialize LRDIMM MB so MRS and RZQ Calibrate commands will be
// USER propagated to all sub-ranks. Per LRDIMM spec, all LRDIMM ranks must have
// USER RTT_WR set, but only physical ranks 0 and 1 should have RTT_NOM set.
// USER Therefore RTT_NOM=0 is broadcast to all ranks, and the non-zero value is
// USER programmed directly into Ranks 0 and 1 using physical MRS targetting.
rw_mgr_rdimm_initialize();
rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
rtt_wr = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
// USER Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks
rw_mgr_lrdimm_rc_program(0, 14, (((RDIMM_CONFIG_WORD_HIGH >> 24) & 0xF) & (~0x4)));
// USER Update contents of AC ROM with new RTT WR, DRV values only (NOM = Off)
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 0, 2);
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 1, 2);
#endif
#if RDIMM
// USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will be
// USER propagated to discrete memory devices
rw_mgr_rdimm_initialize();
#endif
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
#if ADVANCED_ODT_CONTROL
alt_u32 rtt_nom = 0;
alt_u32 rtt_wr = 0;
alt_u32 rtt_drv = 0;
switch (r) {
case 0: {
rtt_nom = MR1_RTT_RANK0;
rtt_wr = MR2_RTT_WR_RANK0;
rtt_drv = MR1_RTT_DRV_RANK0;
} break;
case 1: {
rtt_nom = MR1_RTT_RANK1;
rtt_wr = MR2_RTT_WR_RANK1;
rtt_drv = MR1_RTT_DRV_RANK1;
} break;
case 2: {
rtt_nom = MR1_RTT_RANK2;
rtt_wr = MR2_RTT_WR_RANK2;
rtt_drv = MR1_RTT_DRV_RANK2;
} break;
case 3: {
rtt_nom = MR1_RTT_RANK3;
rtt_wr = MR2_RTT_WR_RANK3;
rtt_drv = MR1_RTT_DRV_RANK3;
} break;
}
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs1, (rtt_nom|rtt_drv),
((RW_MGR_MEM_ADDRESS_MIRRORING>>r)&0x1), 1);
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs2, rtt_wr,
((RW_MGR_MEM_ADDRESS_MIRRORING>>r)&0x1), 2);
#endif //ADVANCED_ODT_CONTROL
//USER set rank
#if MRS_MIRROR_PING_PONG_ATSO
// Special case
// SIDE 0
set_rank_and_odt_mask_for_ping_pong_atso(0, RW_MGR_ODT_MODE_OFF);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET);
// SIDE 1
set_rank_and_odt_mask_for_ping_pong_atso(1, RW_MGR_ODT_MODE_OFF);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR);
// Unmask all CS
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
#else
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR);
} else {
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET);
}
#endif
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
//USER tZQinit = tDLLK = 512 ck cycles
delay_for_n_mem_clocks(512);
}
#if LRDIMM
// USER Configure LRDIMM to target physical ranks decoded by RM bits only (ranks 0,1 only)
// USER Set bit F0RC14.DBA0 to '1' so MRS commands target physical ranks only
rw_mgr_lrdimm_rc_program(0, 14, (((RDIMM_CONFIG_WORD_HIGH >> 24) & 0xF) | 0x4));
// USER update AC ROM MR1 entry to include RTT_NOM
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, (rtt_drv|rtt_nom), 0, 1);
rtt_change_MRS1_MRS2_NOM_WR(__RW_MGR_CONTENT_ac_mrs1, (rtt_drv|rtt_nom), 1, 1);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
} else {
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
}
}
// USER Initiate LRDIMM MB->Physical Rank training here
// USER -> Set minimum skew mode for levelling - F3RC6 = 0001
rw_mgr_lrdimm_rc_program(3, 6, 0x1);
// USER -> Set error status output in register F2RC3 for debugging purposes
rw_mgr_lrdimm_rc_program(2, 3, 0x8);
#ifdef LRDIMM_EXT_CONFIG_ARRAY
// USER Configure LRDIMM ODT/Drive parameters using SPD information
{
static const alt_u8 lrdimm_cfg_array[][3] = LRDIMM_EXT_CONFIG_ARRAY;
alt_u32 cfg_reg_ctr;
for (cfg_reg_ctr = 0; cfg_reg_ctr < (sizeof(lrdimm_cfg_array)/sizeof(lrdimm_cfg_array[0])); cfg_reg_ctr++)
{
alt_u32 lrdimm_fp = (alt_u32)lrdimm_cfg_array[cfg_reg_ctr][0];
alt_u32 lrdimm_rc = (alt_u32)lrdimm_cfg_array[cfg_reg_ctr][1];
alt_u32 lrdimm_val = (alt_u32)lrdimm_cfg_array[cfg_reg_ctr][2];
rw_mgr_lrdimm_rc_program(lrdimm_fp, lrdimm_rc, lrdimm_val);
}
}
#endif // LRDIMM_EXT_CONFIG_ARRAY
// USER -> Initiate MB->DIMM training on the LRDIMM
rw_mgr_lrdimm_rc_program(0, 12, 0x2);
#if (!STATIC_SKIP_DELAY_LOOPS)
// USER Wait for max(tcal) * number of physical ranks. Tcal is approx. 10ms.
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS * RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM; r++)
{
delay_for_n_ns(80000000UL);
}
#endif // !STATIC_SKIP_DELAY_LOOPS
// USER Place MB back in normal operating mode
rw_mgr_lrdimm_rc_program(0, 12, 0x0);
#endif // LRDIMM
}
#if (ENABLE_NON_DESTRUCTIVE_CALIB || ENABLE_NON_DES_CAL)
void rw_mgr_mem_initialize_no_init (void)
{
alt_u32 r;
alt_u32 mem_refresh_all_ranks(alt_u32 no_validate);
TRACE_FUNC();
rw_mgr_rdimm_initialize();
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_RETURN);
delay_for_n_mem_clocks(512);
mem_refresh_all_ranks(1);
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
continue;
}
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
set_jump_as_return();
if((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR);
} else {
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET);
}
// Reprogramming these is not really required but....
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
delay_for_n_mem_clocks(512);
}
IOWR_32DIRECT (RW_MGR_ENABLE_REFRESH, 0, 1); // Enable refresh engine
}
#endif
#endif // DDR3
#if DDR2
void rw_mgr_mem_initialize (void)
{
alt_u32 r;
TRACE_FUNC();
//USER *** NOTE ***
//USER The following STAGE (n) notation refers to the corresponding stage in the Micron datasheet
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER *** STAGE (1, 2, 3) ***
//USER start with CKE low
//USER tINIT is typically 200us (but can be adjusted in the GUI)
//USER The total number of cycles required for this nested counter structure to
//USER complete is defined by:
//USER num_cycles = (CTR0 + 1) * [(CTR1 + 1) * (2 * (CTR2 + 1) + 1) + 1] + 1
//TODO: Need to manage multi-rank
//USER Load counters
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_CKE_0);
//USER Execute count instruction
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER Bring up CKE
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
//USER *** STAGE (4)
//USER Wait for 400ns
delay_for_n_ns(400);
//USER Multi-rank section begins here
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER * **** *
//USER * NOTE *
//USER * **** *
//USER The following commands must be spaced by tMRD or tRPA which are in the order
//USER of 2 to 4 full rate cycles. This is peanuts in the NIOS domain, so for now
//USER we can avoid redundant wait loops
// Possible FIXME BEN: for HHP, we need to add delay loops to be sure
// although, the sequencer write interface by itself likely has enough delay
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER *** STAGE (5)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
//USER *** STAGE (6)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
//USER *** STAGE (7)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
//USER *** STAGE (8)
//USER DLL reset
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_DLL_RESET);
//USER *** STAGE (9)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER *** STAGE (10)
//USER Issue 2 refresh commands spaced by tREF
//USER First REFRESH
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
//USER tREF = 200ns
delay_for_n_ns(200);
//USER Second REFRESH
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
//USER Second idle loop
delay_for_n_ns(200);
//USER *** STAGE (11)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_CALIB);
//USER *** STAGE (12)
//USER OCD defaults
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR_OCD_ENABLE);
//USER *** STAGE (13)
//USER OCD exit
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
//USER *** STAGE (14)
//USER The memory is now initialized. Before being able to use it, we must still
//USER wait for the DLL to lock, 200 clock cycles after it was reset @ STAGE (8).
//USER Since we cannot keep track of time in any other way, let's start counting from now
delay_for_n_mem_clocks(200);
}
}
#endif // DDR2
#if LPDDR2
void rw_mgr_mem_initialize (void)
{
alt_u32 r;
//USER *** NOTE ***
//USER The following STAGE (n) notation refers to the corresponding stage in the Micron datasheet
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER *** STAGE (1, 2, 3) ***
//USER start with CKE low
//USER tINIT1 = 100ns
//USER 100ns @ 300MHz (3.333 ns) ~ 30 cycles
//USER If a is the number of iteration in a loop
//USER it takes the following number of cycles to complete the operation:
//USER number_of_cycles = (2 + n) * a
//USER where n is the number of instruction in the inner loop
//USER One possible solution is n = 0 , a = 15 => a = 0x10
//USER Load counter
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x10));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
//USER Execute count instruction
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
//USER tINIT3 = 200us
delay_for_n_ns(200000);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER Multi-rank section begins here
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER MRW RESET
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR63_RESET);
}
//USER tINIT5 = 10us
delay_for_n_ns(10000);
//USER Multi-rank section begins here
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER MRW ZQC
// Note: We cannot calibrate other ranks when the current rank is calibrating for tZQINIT
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR10_ZQC);
//USER tZQINIT = 1us
delay_for_n_ns(1000);
//USER * **** *
//USER * NOTE *
//USER * **** *
//USER The following commands must be spaced by tMRW which is in the order
//USER of 3 to 5 full rate cycles. This is peanuts in the NIOS domain, so for now
//USER we can avoid redundant wait loops
//USER MRW MR1
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_CALIB);
//USER MRW MR2
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
//USER MRW MR3
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
}
}
#endif // LPDDR2
#if LPDDR1
void rw_mgr_mem_initialize (void)
{
alt_u32 r;
TRACE_FUNC();
//USER *** NOTE ***
//USER The following STAGE (n) notation refers to the corresponding stage in the Micron datasheet
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER *** STAGE (1, 2, 3) ***
//USER start with CKE high
//USER tINIT = 200us
//USER 200us @ 300MHz (3.33 ns) ~ 60000 clock cycles
//USER If a and b are the number of iteration in 2 nested loops
//USER it takes the following number of cycles to complete the operation:
//USER number_of_cycles = ((2 + n) * b + 2) * a
//USER where n is the number of instruction in the inner loop
//USER One possible solution is n = 0 , a = 256 , b = 118 => a = FF, b = 76
//TODO: Need to manage multi-rank
//USER Load counters
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x76));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_1);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_1_inloop);
//USER Execute count instruction and bring up CKE
//USER IOWR_32DIRECT (BASE_RW_MGR, 0, __RW_MGR_COUNT_REG_0);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_1);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER Multi-rank section begins here
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER * **** *
//USER * NOTE *
//USER * **** *
//USER The following commands must be spaced by tMRD or tRPA which are in the order
//USER of 2 to 4 full rate cycles. This is peanuts in the NIOS domain, so for now
//USER we can avoid redundant wait loops
// Possible FIXME BEN: for HHP, we need to add delay loops to be sure
// although, the sequencer write interface by itself likely has enough delay
//USER *** STAGE (9)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER *** STAGE (10)
//USER Issue 2 refresh commands spaced by tREF
//USER First REFRESH
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
//USER tREF = 200ns
delay_for_n_ns(200);
//USER Second REFRESH
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
//USER Second idle loop
delay_for_n_ns(200);
//USER *** STAGE (11)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_CALIB);
//USER *** STAGE (13)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
}
}
#endif // LPDDR1
#if QDRII
void rw_mgr_mem_initialize (void)
{
TRACE_FUNC();
//USER Turn off QDRII DLL to reset it
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE);
//USER Turn on QDRII DLL and wait 25us for it to lock
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
delay_for_n_ns(25000);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
}
#endif
#if QDRII
void rw_mgr_mem_dll_lock_wait (void)
{
//USER The DLL in QDR requires 25us to lock
delay_for_n_ns(25000);
}
#else
void rw_mgr_mem_dll_lock_wait (void) { }
#endif
#if RLDRAMII
void rw_mgr_mem_initialize (void)
{
TRACE_FUNC();
//USER start with memory RESET activated
//USER tINIT = 200us
delay_for_n_ns(200000);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER Dummy MRS, followed by valid MRS commands to reset the DLL on memory device
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS_INIT);
//USER 8192 memory cycles for DLL to lock.
// 8192 cycles are required by Renesas LLDRAM-II, though we don't officially support it
delay_for_n_mem_clocks(8192);
//USER Refresh all banks
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REF_X8);
//USER 1024 memory cycles
delay_for_n_mem_clocks(1024);
}
#endif
#if RLDRAM3
void rw_mgr_mem_initialize (void)
{
TRACE_FUNC();
alt_u32 r;
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER start with memory RESET activated
//USER tINIT = 200us
//USER 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
//USER If a and b are the number of iteration in 2 nested loops
//USER it takes the following number of cycles to complete the operation:
//USER number_of_cycles = ((2 + n) * a + 2) * b
//USER where n is the number of instruction in the inner loop
//USER One possible solution is n = 0 , a = 256 , b = 106 => a = FF, b = 6A
//USER Load counters
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0xFF));
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x6A));
//USER Load jump address
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_inloop);
//USER Execute count instruction
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0);
//USER indicate that memory is stable
IOWR_32DIRECT (PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER transition the RESET to high
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
//USER Wait for 10000 cycles
delay_for_n_mem_clocks(10000);
//USER Load MR0
if ( RW_MGR_MEM_NUMBER_OF_RANKS == 1 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 2 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 4 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
//USER Wait MRSC
delay_for_n_mem_clocks(12);
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_QUAD_RANK);
}
else {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0);
}
//USER Wait MRSC
delay_for_n_mem_clocks(12);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Load MR1 (reset DLL reset and kick off long ZQ calibration)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_CALIB);
//USER Wait 512 cycles for DLL to reset and for ZQ calibration to complete
delay_for_n_mem_clocks(512);
}
//USER Load MR2 (set write protocol to Single Bank)
if ( RW_MGR_MEM_NUMBER_OF_RANKS == 1 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 2 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 4 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
}
else {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
}
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_CALIB);
//USER Wait MRSC and a bit more
delay_for_n_mem_clocks(64);
}
#endif
//USER At the end of calibration we have to program the user settings in, and
//USER hand off the memory to the user.
#if DDR3
void rw_mgr_mem_handoff (void)
{
alt_u32 r;
#if LRDIMM
alt_u32 rtt_nom;
alt_u32 rtt_drv;
alt_u32 rtt_wr;
#endif // LRDIMM
TRACE_FUNC();
#if LRDIMM
rtt_nom = LRDIMM_SPD_MR_RTT_NOM(LRDIMM_SPD_MR);
rtt_drv = LRDIMM_SPD_MR_RTT_DRV(LRDIMM_SPD_MR);
rtt_wr = LRDIMM_SPD_MR_RTT_WR(LRDIMM_SPD_MR);
// USER Configure LRDIMM to broadcast LRDIMM MRS commands to all ranks
// USER Set bit F0RC14.DBA0 to '0' so MRS commands target all physical ranks in a logical rank
rw_mgr_lrdimm_rc_program(0, 14, (((RDIMM_CONFIG_WORD_HIGH >> 24) & 0xF) & (~0x4)));
// USER Update contents of AC ROM with new RTT WR, DRV values
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 0, 1);
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs1, rtt_drv, 1, 1);
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 0, 2);
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs2, rtt_wr, 1, 2);
#endif // LRDIMM
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
#if MRS_MIRROR_PING_PONG_ATSO
// Side 0
set_rank_and_odt_mask_for_ping_pong_atso(0, RW_MGR_ODT_MODE_OFF);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
// Side 1
set_rank_and_odt_mask_for_ping_pong_atso(1, RW_MGR_ODT_MODE_OFF);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER_MIRR);
// Unmask all CS
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
#else
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER load up MR settings specified by user
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER_MIRR);
} else {
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
}
#endif
//USER need to wait tMOD (12CK or 15ns) time before issuing other commands,
//USER but we will have plenty of NIOS cycles before actual handoff so its okay.
}
#if LRDIMM
delay_for_n_mem_clocks(12);
// USER Set up targetted MRS commands
rw_mgr_lrdimm_rc_program(0, 14, (((RDIMM_CONFIG_WORD_HIGH >> 24) & 0xF) | 0x4));
// USER update AC ROM MR1 entry to include RTT_NOM for physical ranks 0,1 only
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs1, (rtt_drv|rtt_nom), 0, 1);
rtt_change_MRS1_MRS2_NOM_WR (__RW_MGR_CONTENT_ac_mrs1, (rtt_drv|rtt_nom), 1, 1);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
} else {
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
}
}
#endif // LRDIMM
}
#endif // DDR3
#if DDR2
void rw_mgr_mem_handoff (void)
{
alt_u32 r;
TRACE_FUNC();
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER load up MR settings specified by user
// FIXME BEN: for HHP, we need to add delay loops to be sure
// We can check this with BFM perhaps
// Likely enough delay in RW_MGR though
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
//USER need to wait tMOD (12CK or 15ns) time before issuing other commands,
//USER but we will have plenty of NIOS cycles before actual handoff so its okay.
}
}
#endif //USER DDR2
#if LPDDR2
void rw_mgr_mem_handoff (void)
{
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks...
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER load up MR settings specified by user
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_USER);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
}
}
#endif //USER LPDDR2
#if LPDDR1
void rw_mgr_mem_handoff (void)
{
alt_u32 r;
TRACE_FUNC();
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER load up MR settings specified by user
// FIXME BEN: for HHP, we need to add delay loops to be sure
// We can check this with BFM perhaps
// Likely enough delay in RW_MGR though
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
//USER need to wait tMOD (12CK or 15ns) time before issuing other commands,
//USER but we will have plenty of NIOS cycles before actual handoff so its okay.
}
}
#endif //USER LPDDR1
#if RLDRAMII
void rw_mgr_mem_handoff (void)
{
TRACE_FUNC();
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS);
}
#endif
#if RLDRAM3
void rw_mgr_mem_handoff (void)
{
TRACE_FUNC();
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Load user requested MR1
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
}
if ( RW_MGR_MEM_NUMBER_OF_RANKS == 1 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 2 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFC);
} else if ( RW_MGR_MEM_NUMBER_OF_RANKS == 4 ) {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xF0);
}
else {
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, 0xFE);
}
//USER Load user requested MR2
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
//USER Wait MRSC and a bit more
delay_for_n_mem_clocks(64);
}
#endif
#if QDRII
void rw_mgr_mem_handoff (void)
{
TRACE_FUNC();
}
#endif
#if DDRX
//USER performs a guaranteed read on the patterns we are going to use during a read test to ensure memory works
alt_u32 rw_mgr_mem_calibrate_read_test_patterns (alt_u32 rank_bgn, alt_u32 group, alt_u32 num_tries, t_btfld *bit_chk, alt_u32 all_ranks)
{
alt_u32 r, vg;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
alt_u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
//USER Load up a constant bursts of read commands
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_READ);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_READ_CONT);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--)
{
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, ((group*RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS+vg) << 2), __RW_MGR_GUARANTEED_READ);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "test_load_patterns(%lu,ALL) => (%lu == %lu) => %lu", group, *bit_chk, param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
}
alt_u32 rw_mgr_mem_calibrate_read_test_patterns_all_ranks (alt_u32 group, alt_u32 num_tries, t_btfld *bit_chk)
{
if (rw_mgr_mem_calibrate_read_test_patterns (0, group, num_tries, bit_chk, 1))
{
return 1;
}
else
{
// case:139851 - if guaranteed read fails, we can retry using different dqs enable phases.
// It is possible that with the initial phase, dqs enable is asserted/deasserted too close
// to an dqs edge, truncating the read burst.
alt_u32 p;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks (group, p);
if (rw_mgr_mem_calibrate_read_test_patterns (0, group, num_tries, bit_chk, 1))
{
return 1;
}
}
return 0;
}
}
#endif
//USER load up the patterns we are going to use during a read test
#if DDRX
void rw_mgr_mem_calibrate_read_load_patterns (alt_u32 rank_bgn, alt_u32 all_ranks)
{
alt_u32 r;
alt_u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
TRACE_FUNC();
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
//USER Load up a constant bursts
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1);
#if QUARTER_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x01);
#endif
#if HALF_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x02);
#endif
#if FULL_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x04);
#endif
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_WAIT2);
#if QUARTER_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x01);
#endif
#if HALF_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x02);
#endif
#if FULL_RATE
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x04);
#endif
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_WAIT3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
#endif
#if QDRII
void rw_mgr_mem_calibrate_read_load_patterns (alt_u32 rank_bgn, alt_u32 all_ranks)
{
TRACE_FUNC();
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE);
}
#endif
#if RLDRAMX
void rw_mgr_mem_calibrate_read_load_patterns (alt_u32 rank_bgn, alt_u32 all_ranks)
{
TRACE_FUNC();
alt_u32 r;
alt_u32 rank_end = RW_MGR_MEM_NUMBER_OF_RANKS;//all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
#if QUARTER_RATE
alt_u32 write_data_cycles = 0x10;
#else
alt_u32 write_data_cycles = 0x20;
#endif
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, write_data_cycles);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, write_data_cycles);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, write_data_cycles);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_WAIT2);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, write_data_cycles);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_WAIT3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
#endif
static inline void rw_mgr_mem_calibrate_read_load_patterns_all_ranks (void)
{
rw_mgr_mem_calibrate_read_load_patterns (0, 1);
}
// pe checkout pattern for harden managers
//void pe_checkout_pattern (void)
//{
// // test RW manager
//
// // do some reads to check load buffer
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_READ_B2B);
//
// alt_u32 readdata;
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// // do read
// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_READ_B2B);
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // error word should be 0x00
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// // do dm read
// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1);
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // error word should be ff
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// // exit loopback mode
// IOWR_32DIRECT (BASE_RW_MGR, 0, __RW_MGR_IDLE_LOOP2);
//
// // start of phy manager access
//
// readdata = IORD_32DIRECT (PHY_MGR_MAX_RLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_WLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_RLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_SKIP_STEPS, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_VFIFO_OFFSET, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_LFIFO_OFFSET, 0);
//
// // start of data manager test
//
// readdata = IORD_32DIRECT (DATA_MGR_DRAM_CFG , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WL , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_ADD , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RL , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RFC , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_REFI , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WR , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_MRD , 0);
// readdata = IORD_32DIRECT (DATA_MGR_COL_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_ROW_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_BANK_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_CS_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_ITF_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_DVC_WIDTH , 0);
//
//}
//USER try a read and see if it returns correct data back. has dummy reads inserted into the mix
//USER used to align dqs enable. has more thorough checks than the regular read test.
alt_u32 rw_mgr_mem_calibrate_read_test (alt_u32 rank_bgn, alt_u32 group, alt_u32 num_tries, alt_u32 all_correct, t_btfld *bit_chk, alt_u32 all_groups, alt_u32 all_ranks)
{
alt_u32 r, vg;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
alt_u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
#if LRDIMM
// USER Disable MB Write-levelling mode and enter normal operation
rw_mgr_lrdimm_rc_program(0,12,0x0);
#endif
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
alt_u32 quick_read_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x10);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x10);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
if(quick_read_mode) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x1); /* need at least two (1+1) reads to capture failures */
} else if (all_groups) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x06);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x32);
}
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
if(all_groups) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
}
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--)
{
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
IOWR_32DIRECT (all_groups ? RW_MGR_RUN_ALL_GROUPS : RW_MGR_RUN_SINGLE_GROUP, ((group*RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS+vg) << 2), __RW_MGR_READ_B2B);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
#if ENABLE_BRINGUP_DEBUGGING
load_di_buf_gbl();
#endif
#if DDRX
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
#endif
if (all_correct)
{
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "read_test(%lu,ALL,%lu) => (%lu == %lu) => %lu", group, all_groups, *bit_chk, param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
}
else
{
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "read_test(%lu,ONE,%lu) => (%lu != %lu) => %lu", group, all_groups, *bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0x00));
return (*bit_chk != 0x00);
}
}
static inline alt_u32 rw_mgr_mem_calibrate_read_test_all_ranks (alt_u32 group, alt_u32 num_tries, alt_u32 all_correct, t_btfld *bit_chk, alt_u32 all_groups)
{
return rw_mgr_mem_calibrate_read_test (0, group, num_tries, all_correct, bit_chk, all_groups, 1);
}
#if ENABLE_DELAY_CHAIN_WRITE
void rw_mgr_incr_vfifo_auto(alt_u32 grp) {
alt_u32 v;
v = vfifo_settings[grp]%VFIFO_SIZE;
rw_mgr_incr_vfifo(grp, &v);
vfifo_settings[grp] = v;
}
void rw_mgr_decr_vfifo_auto(alt_u32 grp) {
alt_u32 v;
v = vfifo_settings[grp]%VFIFO_SIZE;
rw_mgr_decr_vfifo(grp, &v);
vfifo_settings[grp] = v;
}
#endif // ENABLE_DELAY_CHAIN_WRITE
void rw_mgr_incr_vfifo(alt_u32 grp, alt_u32 *v) {
//USER fiddle with FIFO
if(HARD_PHY) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp);
} else if (QUARTER_RATE_MODE && !HARD_VFIFO) {
if ((*v & 3) == 3) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_QR, 0, grp);
} else if ((*v & 2) == 2) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, grp);
} else if ((*v & 1) == 1) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
} else {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
} else if (HARD_VFIFO) {
// Arria V & Cyclone V have a hard full-rate VFIFO that only has a single incr signal
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
else {
if (!HALF_RATE_MODE || (*v & 1) == 1) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
} else {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
}
(*v)++;
#if USE_DQS_TRACKING && !HHP_HPS
IOWR_32DIRECT (TRK_V_POINTER, (grp << 2), *v);
#endif
BFM_INC_VFIFO;
}
//Used in quick cal to properly loop through the duplicated VFIFOs in AV QDRII/RLDRAM
static inline void rw_mgr_incr_vfifo_all(alt_u32 grp, alt_u32 *v) {
#if VFIFO_CONTROL_WIDTH_PER_DQS == 1
rw_mgr_incr_vfifo(grp, v);
#else
alt_u32 i;
for(i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, v);
if(i != 0) {
(*v)--;
}
}
#endif
}
void rw_mgr_decr_vfifo(alt_u32 grp, alt_u32 *v) {
alt_u32 i;
for (i = 0; i < VFIFO_SIZE-1; i++) {
rw_mgr_incr_vfifo(grp, v);
}
}
//USER find a good dqs enable to use
#if QDRII || RLDRAMX
alt_u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (alt_u32 grp)
{
alt_u32 v;
alt_u32 found;
alt_u32 dtaps_per_ptap, tmp_delay;
t_btfld bit_chk;
TRACE_FUNC("%lu", grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_DQS_EN_PHASE);
found = 0;
//USER first push vfifo until we get a passing read
for (v = 0; v < VFIFO_SIZE && found == 0;) {
DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET(vfifo_idx));
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found = 1;
}
if (!found) {
//USER fiddle with FIFO
#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
alt_u32 i;
for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
v--; // undo increment of v in rw_mgr_incr_vfifo
}
v++; // add back single increment
#else
rw_mgr_incr_vfifo(grp, &v);
#endif
}
}
#if (VFIFO_CONTROL_WIDTH_PER_DQS != 1)
if (found) {
// we found a vfifo setting that works for at least one vfifo "group"
// Some groups may need next vfifo setting, so check each one to
// see if we get new bits passing by increment the vfifo
alt_u32 i;
t_btfld best_bit_chk_inv;
alt_u8 found_on_first_check = (v == 1);
best_bit_chk_inv = ~bit_chk;
for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
v--; // undo increment of v in rw_mgr_incr_vfifo, just in case it matters for next check
rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if ((bit_chk & best_bit_chk_inv) != 0) {
// found some new bits
best_bit_chk_inv = ~bit_chk;
} else {
// no improvement, so put back
rw_mgr_decr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
v++;
if (found_on_first_check) {
// found on first vfifo check, so we also need to check earlier vfifo values
rw_mgr_decr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
v++; // undo decrement of v in rw_mgr_incr_vfifo, just in case it matters for next check
rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if ((bit_chk & best_bit_chk_inv) != 0) {
// found some new bits
best_bit_chk_inv = ~bit_chk;
} else {
// no improvement, so put back
rw_mgr_incr_vfifo(grp*VFIFO_CONTROL_WIDTH_PER_DQS+i, &v);
v--;
}
} // found_on_first_check
} // check for new bits
} // loop over all vfifo control bits
}
#endif
if (found) {
DPRINT(2, "find_dqs_en_phase: found vfifo=%lu", BFM_GBL_GET(vfifo_idx));
// Not really dqs_enable left/right edge, but close enough for testing purposes
BFM_GBL_SET(dqs_enable_left_edge[grp].v,BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_right_edge[grp].v,BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_mid[grp].v,BFM_GBL_GET(vfifo_idx));
} else {
DPRINT(2, "find_dqs_en_phase: no valid vfifo found");
}
#if ENABLE_TCL_DEBUG
// FIXME: Not a dynamically calculated value for dtaps_per_ptap
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
TCLRPT_SET(debug_summary_report->computed_dtap_per_ptap, dtaps_per_ptap);
#endif
return found;
}
#endif
#if DDRX
#if NEWVERSION_DQSEN
// Navid's version
alt_u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (alt_u32 grp)
{
alt_u32 i, d, v, p, sr;
alt_u32 max_working_cnt;
alt_u32 fail_cnt;
t_btfld bit_chk;
alt_u32 dtaps_per_ptap;
alt_u32 found_begin, found_end;
alt_u32 work_bgn, work_mid, work_end, tmp_delay;
alt_u32 test_status;
alt_u32 found_passing_read, found_failing_read, initial_failing_dtap;
#if RUNTIME_CAL_REPORT
alt_u32 start_v[NUM_SHADOW_REGS], start_p[NUM_SHADOW_REGS], start_d[NUM_SHADOW_REGS];
alt_u32 end_v[NUM_SHADOW_REGS], end_p[NUM_SHADOW_REGS], end_d[NUM_SHADOW_REGS];
for(sr = 0; sr < NUM_SHADOW_REGS; sr++) {
start_v[sr] = 0;
start_p[sr] = 0;
start_d[sr] = 0;
}
#endif
TRACE_FUNC("%lu", grp);
BFM_STAGE("find_dqs_en_phase");
ALTERA_ASSERT(grp < RW_MGR_MEM_IF_READ_DQS_WIDTH);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
#if SKIP_PTAP_0_DQS_EN_CAL
scc_mgr_set_dqs_en_phase_all_ranks(grp, 1);
#else
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
#endif
fail_cnt = 0;
//USER **************************************************************
//USER * Step 0 : Determine number of delay taps for each phase tap *
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
tmp_delay = 0;
TCLRPT_SET(debug_summary_report->computed_dtap_per_ptap, dtaps_per_ptap);
// VFIFO sweep
#if ENABLE_DQSEN_SWEEP
init_di_buffer();
work_bgn = 0;
for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "find_dqs_en_phase: begin: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
//if (p ==0 && d == 0)
sample_di_data(bit_chk, work_bgn, d, i, p);
}
//Increment FIFO
rw_mgr_incr_vfifo(grp, &v);
}
work_bgn++;
}
flag_di_buffer_done();
#endif
//USER *********************************************************
//USER * Step 1 : First push vfifo until we get a failing read *
for (v = 0; v < VFIFO_SIZE; ) {
DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET(vfifo_idx));
test_status = rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
DPRINT(2, "find_dqs_en_phase: vfifo failed");
return 0;
}
max_working_cnt = 0;
//USER ********************************************************
//USER * step 2: find first working phase, increment in ptaps *
found_begin = 0;
work_bgn = 0;
for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
#if SKIP_PTAP_0_DQS_EN_CAL
// Skip p == 0 setting for HARD PHY
if (p == 0) {
continue;
}
#endif
DPRINT(2, "find_dqs_en_phase: begin: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if (test_status) {
max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
}
if (found_begin) {
break;
}
}
if (i >= VFIFO_SIZE) {
//USER cannot find working solution
DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap");
return 0;
}
work_end = work_bgn;
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
//USER ********************************************************************
//USER * step 3a: if we have room, back off by one and increment in dtaps *
COV(EN_PHASE_PTAP_OVERLAP);
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX ;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
// For HARD EMIF we increase the phase if p == 0 as we can't set that value
#if SKIP_PTAP_0_DQS_EN_CAL
if (p == 0) {
p = 1;
tmp_delay = work_bgn;
}
#endif
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
found_begin = 0;
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
DPRINT(2, "find_dqs_en_phase: begin-2: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_begin = 1;
work_bgn = tmp_delay;
break;
}
}
#if BFM_MODE
{
alt_32 p2, v2, d2;
// print out where the actual beginning is
if (found_begin) {
v2 = BFM_GBL_GET(vfifo_idx);
p2 = p;
d2 = d;
} else if (p == IO_DQS_EN_PHASE_MAX) {
v2 = (BFM_GBL_GET(vfifo_idx) + 1) % VFIFO_SIZE;
#if SKIP_PTAP_0_DQS_EN_CAL
p2 = 1;
#else
p2 = 0;
#endif
d2 = 0;
} else {
v2 = BFM_GBL_GET(vfifo_idx);
p2 = p + 1;
d2 = 0;
}
DPRINT(2, "find_dqs_en_phase: begin found: vfifo=%lu ptap=%lu dtap=%lu begin=%lu",
v2, p2, d2, work_bgn);
BFM_GBL_SET(dqs_enable_left_edge[grp].v,v2);
BFM_GBL_SET(dqs_enable_left_edge[grp].p,p2);
BFM_GBL_SET(dqs_enable_left_edge[grp].d,d2);
BFM_GBL_SET(dqs_enable_left_edge[grp].ps,work_bgn);
}
#endif
// Record the debug data
// Currently dqsen is the same for all ranks
for (sr = 0; sr < NUM_SHADOW_REGS; sr++)
{
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].work_begin, work_bgn);
if (found_begin)
{
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].phase_begin, p);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].delay_begin, d);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].vfifo_begin, v % VFIFO_SIZE);
#if RUNTIME_CAL_REPORT
start_v[sr] = v % VFIFO_SIZE;
start_p[sr] = p;
start_d[sr] = d;
#endif
}
else if (p == IO_DQS_EN_PHASE_MAX)
{
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].phase_begin, 0);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].delay_begin, 0);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].vfifo_begin, (v+1) % VFIFO_SIZE);
#if RUNTIME_CAL_REPORT
start_v[sr] = (v+1) % VFIFO_SIZE;
start_p[sr] = p;
start_d[sr] = d;
#endif
}
else
{
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].phase_begin, p+1);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].delay_begin, 0);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].vfifo_begin, v % VFIFO_SIZE);
#if RUNTIME_CAL_REPORT
start_v[sr] = v % VFIFO_SIZE;
start_p[sr] = p+1;
start_d[sr] = d;
#endif
}
}
//USER We have found a working dtap before the ptap found above
if (found_begin == 1) {
max_working_cnt++;
}
//USER Restore VFIFO to old state before we decremented it (if needed)
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
//USER ***********************************************************************************
//USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
p = p + 1;
work_end += IO_DELAY_PER_OPA_TAP;
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
found_end = 0;
for (; i < VFIFO_SIZE + 1; i++) {
for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "find_dqs_en_phase: end: vfifo=%lu ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p, (long unsigned int)0);
#if SKIP_PTAP_0_DQS_EN_CAL
if ( p == 0 ) {
max_working_cnt++;
continue;
}
#endif
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_end = 1;
break;
} else {
max_working_cnt++;
}
}
if (found_end) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
p = 0;
}
}
if (i >= VFIFO_SIZE + 1) {
//USER cannot see edge of failing read
DPRINT(2, "find_dqs_en_phase: end: failed");
return 0;
}
//USER *********************************************************
//USER * step 5a: back off one from last, increment in dtaps *
//USER Special case code for backing up a phase
#if SKIP_PTAP_0_DQS_EN_CAL
if (p == 1) {
p = 0;
work_end -= IO_DELAY_PER_OPA_TAP;
max_working_cnt--;
}
#endif
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
//USER * The actual increment of dtaps is done outside of the if/else loop to share code
d = 0;
DPRINT(2, "find_dqs_en_phase: found end v/p: vfifo=%lu ptap=%lu", BFM_GBL_GET(vfifo_idx), p);
} else {
// We should not be hitting this case as the window should be around one clock cycle wide
//USER ********************************************************************
//USER * step 3-5b: Find the right edge of the window using delay taps *
COV(EN_PHASE_PTAP_NO_OVERLAP);
DPRINT(2, "find_dqs_en_phase: begin found: vfifo=%lu ptap=%lu dtap=%lu begin=%lu", BFM_GBL_GET(vfifo_idx), p, d, work_bgn);
BFM_GBL_SET(dqs_enable_left_edge[grp].v,BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_left_edge[grp].p,p);
BFM_GBL_SET(dqs_enable_left_edge[grp].d,d);
BFM_GBL_SET(dqs_enable_left_edge[grp].ps,work_bgn);
work_end = work_bgn;
//USER * The actual increment of dtaps is done outside of the if/else loop to share code
//USER Only here to counterbalance a subtract later on which is not needed if this branch
//USER of the algorithm is taken
max_working_cnt++;
}
//USER The dtap increment to find the failing edge is done here
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
DPRINT(2, "find_dqs_en_phase: end-2: dtap=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
DPRINT(2, "find_dqs_en_phase: found end v/p/d: vfifo=%lu ptap=%lu dtap=%lu end=%lu", BFM_GBL_GET(vfifo_idx), p, d-1, work_end);
BFM_GBL_SET(dqs_enable_right_edge[grp].v,BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_right_edge[grp].p,p);
BFM_GBL_SET(dqs_enable_right_edge[grp].d,d-1);
BFM_GBL_SET(dqs_enable_right_edge[grp].ps,work_end);
// Record the debug data
for (sr = 0; sr < NUM_SHADOW_REGS; sr++)
{
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].work_end, work_end);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].phase_end, p);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].delay_end, d-1);
TCLRPT_SET(debug_cal_report->cal_dqsen_margins[sr][grp].vfifo_end, v % VFIFO_SIZE);
#if RUNTIME_CAL_REPORT
end_v[sr] = v % VFIFO_SIZE;
end_p[sr] = p;
end_d[sr] = d-1;
#endif
}
if (work_end >= work_bgn) {
//USER we have a working range
} else {
//USER nil range
DPRINT(2, "find_dqs_en_phase: end-2: failed");
return 0;
}
DPRINT(2, "find_dqs_en_phase: found range [%lu,%lu]", work_bgn, work_end);
#if USE_DQS_TRACKING
// ***************************************************************
//USER * We need to calculate the number of dtaps that equal a ptap
//USER * To do that we'll back up a ptap and re-find the edge of the
//USER * window using dtaps
DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking");
//USER Special case code for backing up a phase
#if SKIP_PTAP_0_DQS_EN_CAL
if (p == 0 || p == 1) {
#else
if (p == 0) {
#endif
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
DPRINT(2, "find_dqs_en_phase: backed up cycle/phase: v=%lu p=%lu", BFM_GBL_GET(vfifo_idx), p);
} else {
p = p - 1;
DPRINT(2, "find_dqs_en_phase: backed up phase only: v=%lu p=%lu", BFM_GBL_GET(vfifo_idx), p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
//USER Increase dtap until we first see a passing read (in case the window is smaller than a ptap),
//USER and then a failing read to mark the edge of the window again
//USER Find a passing read
DPRINT(2, "find_dqs_en_phase: find passing read");
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
//USER Find a failing read
DPRINT(2, "find_dqs_en_phase: find failing read");
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
DPRINT(1, "find_dqs_en_phase: failed to calculate dtaps per ptap. Fall back on static value");
}
//USER The dynamically calculated dtaps_per_ptap is only valid if we found a passing/failing read
//USER If we didn't, it means d hit the max (IO_DQS_EN_DELAY_MAX).
//USER Otherwise, dtaps_per_ptap retains its statically calculated value.
if(found_passing_read && found_failing_read) {
dtaps_per_ptap = d - initial_failing_dtap;
}
ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
#if HHP_HPS
IOWR_32DIRECT (REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
#else
IOWR_32DIRECT (TRK_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
#endif
DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%lu - %lu = %lu", d, initial_failing_dtap, dtaps_per_ptap);
#endif
//USER ********************************************
//USER * step 6: Find the centre of the window *
work_mid = (work_bgn + work_end) / 2;
tmp_delay = 0;
DPRINT(2, "work_bgn=%ld work_end=%ld work_mid=%ld", work_bgn, work_end, work_mid);
//USER Get the middle delay to be less than a VFIFO delay
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, tmp_delay += IO_DELAY_PER_OPA_TAP);
DPRINT(2, "vfifo ptap delay %ld", tmp_delay);
while(work_mid > tmp_delay) work_mid -= tmp_delay;
DPRINT(2, "new work_mid %ld", work_mid);
tmp_delay = 0;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP);
tmp_delay -= IO_DELAY_PER_OPA_TAP;
DPRINT(2, "new p %ld, tmp_delay=%ld", p-1, tmp_delay);
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
DPRINT(2, "new d %ld, tmp_delay=%ld", d, tmp_delay);
// DQSEN same for all shadow reg
for(sr = 0; sr < NUM_SHADOW_REGS; sr++) {
TCLRPT_SET(debug_cal_report->cal_dqs_in_margins[sr][grp].dqsen_margin, max_working_cnt -1);
}
#if SKIP_PTAP_0_DQS_EN_CAL
if (p == 1) {
// If center lies at p=0 and d=d, then the safest choice is to set the center at p=1 and d=0
p = 2;
d = 0;
}
#endif
scc_mgr_set_dqs_en_phase_all_ranks(grp, p-1);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate. We can do this because
//USER the largest possible margin in 1 VFIFO cycle
for (i = 0; i < VFIFO_SIZE; i++) {
DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu", BFM_GBL_GET(vfifo_idx));
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
DPRINT(2, "find_dqs_en_phase: center: failed");
return 0;
}
#if RUNTIME_CAL_REPORT
for(sr = 0; sr < NUM_SHADOW_REGS; sr++) {
RPRINT("DQS Enable ; Group %lu ; Rank %lu ; Start VFIFO %2li ; Phase %li ; Delay %2li", grp, sr, start_v[sr], start_p[sr], start_d[sr]);
RPRINT("DQS Enable ; Group %lu ; Rank %lu ; End VFIFO %2li ; Phase %li ; Delay %2li", grp, sr, end_v[sr], end_p[sr], end_d[sr]);
// Case 174276: Normalizing VFIFO center
RPRINT("DQS Enable ; Group %lu ; Rank %lu ; Center VFIFO %2li ; Phase %li ; Delay %2li", grp, sr, (v % VFIFO_SIZE), p-1, d);
}
#endif
DPRINT(2, "find_dqs_en_phase: center found: vfifo=%li ptap=%lu dtap=%lu", BFM_GBL_GET(vfifo_idx), p-1, d);
#if ENABLE_DELAY_CHAIN_WRITE
vfifo_settings[grp] = v;
#endif // ENABLE_DELAY_CHAIN_WRITE
BFM_GBL_SET(dqs_enable_mid[grp].v,BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_mid[grp].p,p-1);
BFM_GBL_SET(dqs_enable_mid[grp].d,d);
BFM_GBL_SET(dqs_enable_mid[grp].ps,work_mid);
return 1;
}
#if 0
// Ryan's algorithm
alt_u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (alt_u32 grp)
{
alt_u32 i, d, v, p;
alt_u32 min_working_p, max_working_p, min_working_d, max_working_d, max_working_cnt;
alt_u32 fail_cnt;
t_btfld bit_chk;
alt_u32 dtaps_per_ptap;
alt_u32 found_begin, found_end;
alt_u32 tmp_delay;
TRACE_FUNC("%lu", grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
fail_cnt = 0;
//USER **************************************************************
//USER * Step 0 : Determine number of delay taps for each phase tap *
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
//USER *********************************************************
//USER * Step 1 : First push vfifo until we get a failing read *
for (v = 0; v < VFIFO_SIZE; ) {
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
return 0;
}
max_working_cnt = 0;
min_working_p = 0;
//USER ********************************************************
//USER * step 2: find first working phase, increment in ptaps *
found_begin = 0;
for (d = 0; d <= dtaps_per_ptap; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
}
if (found_begin) {
break;
}
}
if (i >= VFIFO_SIZE) {
//USER cannot find working solution
return 0;
}
min_working_p = p;
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
//USER ********************************************************************
//USER * step 3a: if we have room, back off by one and increment in dtaps *
min_working_d = 0;
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX ;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
found_begin = 0;
for (d = 0; d <= dtaps_per_ptap; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_begin = 1;
min_working_d = d;
break;
}
}
//USER We have found a working dtap before the ptap found above
if (found_begin == 1) {
min_working_p = p;
max_working_cnt++;
}
//USER Restore VFIFO to old state before we decremented it
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
//USER ***********************************************************************************
//USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
found_end = 0;
for (; i < VFIFO_SIZE+1; i++) {
for (; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_end = 1;
break;
} else {
max_working_cnt++;
}
}
if (found_end) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
p = 0;
}
}
if (i >= VFIFO_SIZE+1) {
//USER cannot see edge of failing read
return 0;
}
//USER *********************************************************
//USER * step 5a: back off one from last, increment in dtaps *
max_working_d = 0;
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
max_working_p = p;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
for (d = 0; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
} else {
//USER ********************************************************************
//USER * step 3-5b: Find the right edge of the window using delay taps *
max_working_p = min_working_p;
min_working_d = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
//USER Only here to counterbalance a subtract later on which is not needed if this branch
//USER of the algorithm is taken
max_working_cnt++;
}
//USER ********************************************
//USER * step 6: Find the centre of the window *
//USER If the number of working phases is even we will step back a phase and find the
//USER edge with a larger delay chain tap
if ((max_working_cnt & 1) == 0) {
p = min_working_p + (max_working_cnt-1)/2;
//USER Special case code for backing up a phase
if (max_working_p == 0) {
max_working_p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
max_working_p = max_working_p - 1;
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, max_working_p);
//USER Code to determine at which dtap we should start searching again for a failure
//USER If we've moved back such that the max and min p are the same, we should start searching
//USER from where the window actually exists
if (max_working_p == min_working_p) {
d = min_working_d;
} else {
d = max_working_d;
}
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
} else {
p = min_working_p + (max_working_cnt)/2;
}
while (p > IO_DQS_EN_PHASE_MAX) {
p -= (IO_DQS_EN_PHASE_MAX + 1);
}
d = (min_working_d + max_working_d)/2;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate
for (i = 0; i < VFIFO_SIZE; i++) {
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
return 0;
}
return 1;
}
#endif
#else
// Val's original version
alt_u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (alt_u32 grp)
{
alt_u32 i, j, v, d;
alt_u32 min_working_d, max_working_cnt;
alt_u32 fail_cnt;
t_btfld bit_chk;
alt_u32 delay_per_ptap_mid;
TRACE_FUNC("%lu", grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
fail_cnt = 0;
//USER first push vfifo until we get a failing read
v = 0;
for (i = 0; i < VFIFO_SIZE; i++) {
if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
return 0;
}
max_working_cnt = 0;
min_working_d = 0;
for (i = 0; i < VFIFO_SIZE+1; i++) {
for (d = 0; d <= IO_DQS_EN_PHASE_MAX; d++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
rw_mgr_mem_calibrate_read_test_all_ranks (grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0);
if (bit_chk) {
//USER passing read
if (max_working_cnt == 0) {
min_working_d = d;
}
max_working_cnt++;
} else {
if (max_working_cnt > 0) {
//USER already have one working value
break;
}
}
}
if (d > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
} else {
//USER found working solution!
d = min_working_d + (max_working_cnt - 1) / 2;
while (d > IO_DQS_EN_PHASE_MAX) {
d -= (IO_DQS_EN_PHASE_MAX + 1);
}
break;
}
}
if (i >= VFIFO_SIZE+1) {
//USER cannot find working solution or cannot see edge of failing read
return 0;
}
//USER in the case the number of working steps is even, use 50ps taps to further center the window
if ((max_working_cnt & 1) == 0) {
delay_per_ptap_mid = IO_DELAY_PER_OPA_TAP / 2;
//USER increment in 50ps taps until we reach the required amount
for (i = 0, j = 0; i <= IO_DQS_EN_DELAY_MAX && j < delay_per_ptap_mid; i++, j += IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
scc_mgr_set_dqs_en_delay_all_ranks(grp, i - 1);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate
for (i = 0; i < VFIFO_SIZE; i++) {
if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo (grp, &v);
}
if (i >= VFIFO_SIZE) {
return 0;
}
return 1;
}
#endif
#endif
// Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different dq_in_delay values
static inline alt_u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay (alt_u32 write_group, alt_u32 read_group, alt_u32 test_bgn)
{
#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
alt_u32 found;
alt_u32 i;
alt_u32 p;
alt_u32 d;
alt_u32 r;
const alt_u32 delay_step = IO_IO_IN_DELAY_MAX/(RW_MGR_MEM_DQ_PER_READ_DQS-1); /* we start at zero, so have one less dq to devide among */
TRACE_FUNC("(%lu,%lu,%lu)", write_group, read_group, test_bgn);
// try different dq_in_delays since the dq path is shorter than dqs
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu r=%lu, i=%lu p=%lu d=%lu",
write_group, read_group, r, i, p, d);
scc_mgr_set_dq_in_delay(write_group, p, d);
scc_mgr_load_dq (p);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
DPRINT(1, "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu found=%lu; Reseting delay chain to zero",
write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, 0);
scc_mgr_load_dq (p);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
return found;
#else
return rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
#endif
}
//USER per-bit deskew DQ and center
#if NEWVERSION_RDDESKEW
alt_u32 rw_mgr_mem_calibrate_vfifo_center (alt_u32 rank_bgn, alt_u32 write_group, alt_u32 read_group, alt_u32 test_bgn, alt_u32 use_read_test, alt_u32 update_fom)
{
alt_u32 i, p, d, min_index;
//USER Store these as signed since there are comparisons with signed numbers
t_btfld bit_chk;
t_btfld sticky_bit_chk;
alt_32 left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
alt_32 mid;
alt_32 orig_mid_min, mid_min;
alt_32 new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, final_dqs_en;
alt_32 dq_margin, dqs_margin;
alt_u32 stop;
TRACE_FUNC("%lu %lu", read_group, test_bgn);
#if BFM_MODE
if (use_read_test) {
BFM_STAGE("vfifo_center");
} else {
BFM_STAGE("vfifo_center_after_writes");
}
#endif
ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
}
select_curr_shadow_reg_using_rank(rank_bgn);
//USER per-bit deskew
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_IN_DELAY_MAX + 1) as an illegal value
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
//USER Search for the left edge of the window for each bit
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay (write_group, test_bgn, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test (rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
DPRINT(2, "vfifo_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the left_edge
left_edge[i] = d;
} else {
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
DPRINT(2, "vfifo_center[l,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
//USER Reset DQ delay chains to 0
scc_mgr_apply_group_dq_in_delay (write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
DPRINT(2, "vfifo_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
}
//USER Reset sticky bit (except for bits where we have seen both the left and right edge)
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
{
break;
}
}
//USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
alt_u32 delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX) {
delay = IO_DQS_EN_DELAY_MAX;
}
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test (rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
DPRINT(2, "vfifo_center(right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1 && left_edge[i] != IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -1;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
DPRINT(2, "vfifo_center[r,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
// Store all observed margins
#if ENABLE_TCL_DEBUG
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
alt_u32 dq = read_group*RW_MGR_MEM_DQ_PER_READ_DQS + i;
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
TCLRPT_SET(debug_cal_report->cal_dq_in_margins[curr_shadow_reg][dq].left_edge, left_edge[i]);
TCLRPT_SET(debug_cal_report->cal_dq_in_margins[curr_shadow_reg][dq].right_edge, right_edge[i]);
}
#endif
//USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]);
BFM_GBL_SET(dq_read_left_edge[read_group][i],left_edge[i]);
BFM_GBL_SET(dq_read_right_edge[read_group][i],right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] == IO_IO_IN_DELAY_MAX + 1)) {
//USER Restore delay chain settings before letting the loop in
//USER rw_mgr_mem_calibrate_vfifo to retry different dqs/ck relationships
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, start_dqs_en);
}
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
DPRINT(1, "vfifo_center: failed to find edge [%lu]: %ld %ld", i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group*RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO, CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group*RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
//USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
//USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
//USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
if (mid_min > 0) {
mid_min++;
}
mid_min = mid_min / 2;
DPRINT(1, "vfifo_center: mid_min=%ld (index=%lu)", mid_min, min_index);
//USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
#if ENABLE_DQS_IN_CENTERING
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX) {
new_dqs = IO_DQS_IN_DELAY_MAX;
} else if (new_dqs < 0) {
new_dqs = 0;
}
mid_min = start_dqs - new_dqs;
DPRINT(1, "vfifo_center: new mid_min=%ld new_dqs=%ld", mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) {
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
} else if (start_dqs_en - mid_min < 0) {
mid_min += start_dqs_en - mid_min;
}
}
new_dqs = start_dqs - mid_min;
#else
new_dqs = start_dqs;
mid_min = 0;
#endif
DPRINT(1, "vfifo_center: start_dqs=%ld start_dqs_en=%ld new_dqs=%ld mid_min=%ld",
start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, new_dqs, mid_min);
//USER Initialize data for export structures
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
//USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
//USER Use values before divide by 2 to reduce round off error
shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index]))/2 + (orig_mid_min - mid_min);
DPRINT(2, "vfifo_center: before: shift_dq[%lu]=%ld", i, shift_dq);
if (shift_dq + (alt_32)READ_SCC_DQ_IN_DELAY(p) > (alt_32)IO_IO_IN_DELAY_MAX) {
shift_dq = (alt_32)IO_IO_IN_DELAY_MAX - READ_SCC_DQ_IN_DELAY(i);
} else if (shift_dq + (alt_32)READ_SCC_DQ_IN_DELAY(p) < 0) {
shift_dq = -(alt_32)READ_SCC_DQ_IN_DELAY(p);
}
DPRINT(2, "vfifo_center: after: shift_dq[%lu]=%ld", i, shift_dq);
final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq;
scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
scc_mgr_load_dq (p);
DPRINT(2, "vfifo_center: margin[%lu]=[%ld,%ld]", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
//USER To determine values for export structures
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
dq_margin = left_edge[i] - shift_dq + (-mid_min);
}
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
}
#if ENABLE_DQS_IN_CENTERING
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
final_dqs_en = start_dqs_en - mid_min;
}
#else
final_dqs = start_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
final_dqs_en = start_dqs_en;
}
#endif
//USER Move DQS-en
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs (read_group);
}
#if QDRII || RLDRAMX
//USER Move DQS. Do it gradually to minimize the chance of causing a timing
//USER failure in core FPGA logic driven by an input-strobe-derived clock
d = READ_SCC_DQS_IN_DELAY(read_group);
while (d != final_dqs) {
if (d > final_dqs) {
--d;
} else {
++d;
}
scc_mgr_set_dqs_bus_in_delay(read_group, d);
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
#else
//USER Move DQS
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs (read_group);
#endif
if(update_fom) {
//USER Export values
gbl->fom_in += (dq_margin + dqs_margin)/(RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
TCLRPT_SET(debug_summary_report->fom_in, debug_summary_report->fom_in + (dq_margin + dqs_margin)/(RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH));
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][write_group].fom_in, debug_cal_report->cal_status_per_group[curr_shadow_reg][write_group].fom_in + (dq_margin + dqs_margin)/(RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH));
}
TCLRPT_SET(debug_cal_report->cal_dqs_in_margins[curr_shadow_reg][read_group].dqs_margin, dqs_margin);
TCLRPT_SET(debug_cal_report->cal_dqs_in_margins[curr_shadow_reg][read_group].dq_margin, dq_margin);
DPRINT(2, "vfifo_center: dq_margin=%ld dqs_margin=%ld", dq_margin, dqs_margin);
#if RUNTIME_CAL_REPORT
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (use_read_test) {
RPRINT("Read Deskew ; DQ %2lu ; Rank %lu ; Left edge %3li ; Right edge %3li ; DQ delay %2li ; DQS delay %2li", read_group*RW_MGR_MEM_DQ_PER_READ_DQS + i, curr_shadow_reg, left_edge[i], right_edge[i], final_dq[i], final_dqs);
} else {
RPRINT("Read after Write ; DQ %2lu ; Rank %lu ; Left edge %3li ; Right edge %3li ; DQ delay %2li ; DQS delay %2li", read_group*RW_MGR_MEM_DQ_PER_READ_DQS + i, curr_shadow_reg, left_edge[i], right_edge[i], final_dq[i], final_dqs);
}
}
#endif
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
#else
alt_u32 rw_mgr_mem_calibrate_vfifo_center (alt_u32 rank_bgn, alt_u32 grp, alt_u32 test_bgn, alt_u32 use_read_test)
{
alt_u32 i, p, d;
alt_u32 mid;
t_btfld bit_chk;
alt_u32 max_working_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
alt_u32 dq_margin, dqs_margin;
alt_u32 start_dqs;
TRACE_FUNC("%lu %lu", grp, test_bgn);
//USER per-bit deskew.
//USER start of the per-bit sweep with the minimum working delay setting for
//USER all bits.
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
max_working_dq[i] = 0;
}
for (d = 1; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay (write_group, test_bgn, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_read_test (rank_bgn, grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0)) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
max_working_dq[i] = d;
}
bit_chk = bit_chk >> 1;
}
}
}
//USER determine minimum working value for DQ
dq_margin = IO_IO_IN_DELAY_MAX;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (max_working_dq[i] < dq_margin) {
dq_margin = max_working_dq[i];
}
}
//USER add delay to bring all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
if (max_working_dq[i] > dq_margin) {
scc_mgr_set_dq_in_delay(write_group, i, max_working_dq[i] - dq_margin);
} else {
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
scc_mgr_load_dq (p, p);
}
//USER sweep DQS window, may potentially have more window due to per-bit-deskew that was done
//USER in the previous step.
start_dqs = READ_SCC_DQS_IN_DELAY(grp);
for (d = start_dqs + 1; d <= IO_DQS_IN_DELAY_MAX; d++) {
scc_mgr_set_dqs_bus_in_delay(grp, d);
scc_mgr_load_dqs (grp);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_read_test (rank_bgn, grp, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 0, 0)) {
break;
}
}
scc_mgr_set_dqs_bus_in_delay(grp, start_dqs);
//USER margin on the DQS pin
dqs_margin = d - start_dqs - 1;
//USER find mid point, +1 so that we don't go crazy pushing DQ
mid = (dq_margin + dqs_margin + 1) / 2;
gbl->fom_in += dq_margin + dqs_margin;
// TCLRPT_SET(debug_summary_report->fom_in, debug_summary_report->fom_in + (dq_margin + dqs_margin));
// TCLRPT_SET(debug_cal_report->cal_status_per_group[grp].fom_in, (dq_margin + dqs_margin));
#if ENABLE_DQS_IN_CENTERING
//USER center DQS ... if the headroom is setup properly we shouldn't need to
if (dqs_margin > mid) {
scc_mgr_set_dqs_bus_in_delay(grp, READ_SCC_DQS_IN_DELAY(grp) + dqs_margin - mid);
if (DDRX) {
alt_u32 delay = READ_SCC_DQS_EN_DELAY(grp) + dqs_margin - mid;
if (delay > IO_DQS_EN_DELAY_MAX) {
delay = IO_DQS_EN_DELAY_MAX;
}
scc_mgr_set_dqs_en_delay(grp, delay);
}
}
#endif
scc_mgr_load_dqs (grp);
//USER center DQ
if (dq_margin > mid) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, i, READ_SCC_DQ_IN_DELAY(i) + dq_margin - mid);
scc_mgr_load_dq (p, p);
}
dqs_margin += dq_margin - mid;
dq_margin -= dq_margin - mid;
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
return (dq_margin + dqs_margin) > 0;
}
#endif
//USER calibrate the read valid prediction FIFO.
//USER
//USER - read valid prediction will consist of finding a good DQS enable phase, DQS enable delay, DQS input phase, and DQS input delay.
//USER - we also do a per-bit deskew on the DQ lines.
#if DYNAMIC_CALIBRATION_MODE || STATIC_QUICK_CALIBRATION
#if !ENABLE_SUPER_QUICK_CALIBRATION
//USER VFIFO Calibration -- Quick Calibration
alt_u32 rw_mgr_mem_calibrate_vfifo (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 v, d, i;
alt_u32 found;
t_btfld bit_chk;
TRACE_FUNC("%lu %lu", grp, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
//USER Load up the patterns used by read calibration
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
//USER maximum phase values for the sweep
//USER update info for sims
reg_file_set_group(g);
found = 0;
v = 0;
for (i = 0; i < VFIFO_SIZE && found == 0; i++) {
for (d = 0; d <= IO_DQS_EN_PHASE_MAX && found == 0; d++) {
if (DDRX)
{
scc_mgr_set_dqs_en_phase_all_ranks(g, d);
}
//USER calibrate the vfifo with the current dqs enable phase setting
if (rw_mgr_mem_calibrate_read_test_all_ranks (g, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found = 1;
}
}
if (found) {
break;
} else {
rw_mgr_incr_vfifo_all (g, &v);
}
}
return found;
}
#else
//USER VFIFO Calibration -- Super Quick Calibration
alt_u32 rw_mgr_mem_calibrate_vfifo (alt_u32 grp, alt_u32 test_bgn2)
{
alt_u32 g, v, d, i;
alt_u32 test_bgn;
alt_u32 found;
t_btfld bit_chk;
alt_u32 phase_increment;
alt_u32 final_v_setting = 0;
alt_u32 final_d_setting = 0;
TRACE_FUNC("%lu %lu", grp, test_bgn2);
#if ARRIAV || CYCLONEV
// Compensate for simulation model behaviour
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs (i);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
#endif
//USER The first call to this function will calibrate all groups
if (grp !=0) {
return 1;
}
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
//USER Load up the patterns used by read calibration
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
//USER maximum phase values for the sweep
//USER Calibrate group 0
g = 0;
test_bgn = 0;
//USER update info for sims
reg_file_set_group(g);
found = 0;
//USER In behavioral simulation only phases 0 and IO_DQS_EN_PHASE_MAX/2 are relevant
//USER All other values produces the same results as those 2, so there's really no
//USER point in sweeping them all
phase_increment = (IO_DQS_EN_PHASE_MAX + 1) / 2;
//USER Make sure phase_increment is > 0 to prevent infinite loop
if (phase_increment == 0) phase_increment++;
v = 0;
for (i = 0; i < VFIFO_SIZE && found == 0; i++) {
for (d = 0; d <= IO_DQS_EN_PHASE_MAX && found == 0; d += phase_increment) {
scc_mgr_set_dqs_en_phase_all_ranks(g, d);
//USER calibrate the vfifo with the current dqs enable phase setting
if (rw_mgr_mem_calibrate_read_test_all_ranks (g, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found = 1;
final_v_setting = v;
final_d_setting = d;
}
}
if (!found) {
rw_mgr_incr_vfifo_all (g, &v);
} else {
break;
}
}
if (!found) return 0;
//USER Now copy the calibration settings to all other groups
for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_READ_DQS; (g < RW_MGR_MEM_IF_READ_DQS_WIDTH) && found; g++, test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
//USER Set the VFIFO
v = 0;
for (i = 0; i < final_v_setting; i++) {
rw_mgr_incr_vfifo_all (g, &v);
}
//USER Set the proper phase
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, g);
scc_mgr_set_dqs_en_phase_all_ranks(g, final_d_setting);
//USER Verify that things worked as expected
if(!rw_mgr_mem_calibrate_read_test_all_ranks (g, 1, PASS_ONE_BIT, &bit_chk, 0)) {
//USER Fail
found = 0;
}
}
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0);
return found;
}
#endif
#endif
#if DYNAMIC_CALIBRATION_MODE || STATIC_FULL_CALIBRATION
#if NEWVERSION_GW
//USER VFIFO Calibration -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_vfifo (alt_u32 read_group, alt_u32 test_bgn)
{
alt_u32 p, d, rank_bgn, sr;
alt_u32 dtaps_per_ptap;
alt_u32 tmp_delay;
t_btfld bit_chk;
alt_u32 grp_calibrated;
alt_u32 write_group, write_test_bgn;
alt_u32 failed_substage;
alt_u32 dqs_in_dtaps, orig_start_dqs;
TRACE_FUNC("%lu %lu", read_group, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
if (DDRX) {
write_group = read_group;
write_test_bgn = test_bgn;
} else {
write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS;
}
// USER Determine number of delay taps for each phase tap
dtaps_per_ptap = 0;
tmp_delay = 0;
if (!QDRII) {
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
tmp_delay = 0;
}
//USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 0;
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d+=2) {
if (DDRX || RLDRAMX) {
// In RLDRAMX we may be messing the delay of pins in the same write group but outside of
// the current read group, but that's ok because we haven't calibrated the output side yet.
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks (write_group, write_test_bgn, d);
}
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
//USER set a particular dqdqs phase
if (DDRX) {
scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
}
//USER Previous iteration may have failed as a result of ck/dqs or ck/dk violation,
//USER in which case the device may require special recovery.
if (DDRX || RLDRAMX) {
if (d != 0 || p != 0) {
recover_mem_device_after_ck_dqs_violation();
}
}
DPRINT(1, "calibrate_vfifo: g=%lu p=%lu d=%lu", read_group, p, d);
BFM_GBL_SET(gwrite_pos[read_group].p, p);
BFM_GBL_SET(gwrite_pos[read_group].d, d);
//USER Load up the patterns used by read calibration using current DQDQS phase
#if BFM_MODE
// handled by pre-initializing memory if skipping
if (bfm_gbl.bfm_skip_guaranteed_write == 0) {
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
}
#else
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
#if DDRX
#if !AP_MODE
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks (read_group, 1, &bit_chk)) {
DPRINT(1, "Guaranteed read test failed: g=%lu p=%lu d=%lu", read_group, p, d);
break;
}
}
#endif
#endif
#endif
#if ARRIAV || CYCLONEV
///////
// To make DQS bypass able to calibrate more often
///////
// Loop over different DQS in delay chains for the purpose of DQS Enable calibration finding one bit working
orig_start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
for (dqs_in_dtaps = orig_start_dqs; dqs_in_dtaps <= IO_DQS_IN_DELAY_MAX && grp_calibrated == 0; dqs_in_dtaps++) {
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
WRITE_SCC_DQS_IN_DELAY(read_group, dqs_in_dtaps);
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
}
#endif
// case:56390
#if 0 && ARRIAV && QDRII
// Note, much of this counts on the fact that we don't need to keep track
// of what vfifo offset we are at because incr_vfifo doesn't use it
// We also assume only a single group, and that the vfifo incrementers start at offset zero
#define BIT(w,b) (((w) >> (b)) & 1)
{
alt_u32 prev;
alt_u32 vbase;
alt_u32 i;
grp_calibrated = 0;
// check every combination of vfifo relative settings
for (prev = vbase = 0; vbase < (1 << VFIFO_CONTROL_WIDTH_PER_DQS); prev=vbase, vbase++ ) {
// check each bit to see if we need to increment, decrement, or leave the corresponding vfifo alone
for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
if (BIT(vbase,i) > BIT(prev,i)) {
rw_mgr_incr_vfifo(read_group*VFIFO_CONTROL_WIDTH_PER_DQS + i,0);
} else if (BIT(vbase,i) < BIT(prev,i)) {
rw_mgr_decr_vfifo(read_group*VFIFO_CONTROL_WIDTH_PER_DQS + i,0);
}
}
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay (write_group, read_group, test_bgn)) {
#if ARRIAV || CYCLONEV
///////
// To make DQS bypass able to calibrate more often
///////
// Before doing read deskew, set DQS in back to the reserve value
WRITE_SCC_DQS_IN_DELAY(read_group, orig_start_dqs);
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
#endif
if (! rw_mgr_mem_calibrate_vfifo_center (0, write_group, read_group, test_bgn, 1)) {
// remember last failed stage
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
} else {
grp_calibrated = 1;
}
} else {
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
if (grp_calibrated) {
break;
}
break; // comment out for fix
}
}
#else
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay (write_group, read_group, test_bgn)) {
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
#if RUNTIME_CAL_REPORT
//Report print can cause a delay at each instance of rw_mgr_mem_calibrate_vfifo_center, need to re-issue guaranteed write to ensure no refresh violation
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
#endif
//USER Determine if this set of ranks should be skipped entirely
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
#if ARRIAV || CYCLONEV
///////
// To make DQS bypass able to calibrate more often
///////
// Before doing read deskew, set DQS in back to the reserve value
WRITE_SCC_DQS_IN_DELAY(read_group, orig_start_dqs);
scc_mgr_load_dqs (read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
#endif
// If doing read after write calibration, do not update FOM now - do it then
#if READ_AFTER_WRITE_CALIBRATION
if (! rw_mgr_mem_calibrate_vfifo_center (rank_bgn, write_group, read_group, test_bgn, 1, 0)) {
#else
if (! rw_mgr_mem_calibrate_vfifo_center (rank_bgn, write_group, read_group, test_bgn, 1, 1)) {
#endif
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
#endif
#if BFM_MODE
if (bfm_gbl.bfm_skip_guaranteed_write > 0 && !grp_calibrated) {
// This should never happen with pre-initialized guaranteed write load pattern
// unless calibration was always going to fail
DPRINT(0, "calibrate_vfifo: skip guaranteed write calibration failed");
break;
} else if (bfm_gbl.bfm_skip_guaranteed_write == -1) {
// if skip value is -1, then we expect to fail, but we want to use
// the regular guaranteed write next time
if (grp_calibrated) {
// We shouldn't be succeeding for this test, so this is an error
DPRINT(0, "calibrate_vfifo: ERROR: skip guaranteed write == -1, but calibration passed");
grp_calibrated = 0;
break;
} else {
DPRINT(0, "calibrate_vfifo: skip guaranteed write == -1, expected failure, trying again with no skip");
bfm_gbl.bfm_skip_guaranteed_write = 0;
}
}
#endif
#if ARRIAV || CYCLONEV
///////
// To make DQS bypass able to calibrate more often
///////
}
#endif
}
#if BFM_MODE
if (bfm_gbl.bfm_skip_guaranteed_write && !grp_calibrated) break;
#endif
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
}
//USER Reset the delay chains back to zero if they have moved > 1 (check for > 1 because loop will increase d even when pass in first case)
if (DDRX || RLDRAMII) {
if (d > 2) {
scc_mgr_zero_group(write_group, write_test_bgn, 1);
}
}
return 1;
}
#else
//USER VFIFO Calibration -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_vfifo (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 p, rank_bgn, sr;
alt_u32 grp_calibrated;
alt_u32 failed_substage;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
//USER update info for sims
reg_file_set_group(g);
grp_calibrated = 0;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
//USER set a particular dqdqs phase
if (DDRX) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
}
//USER Load up the patterns used by read calibration using current DQDQS phase
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
#if DDRX
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks (read_group, 1, &bit_chk)) {
break;
}
}
#endif
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay (g, g, test_bgn)) {
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
if (! rw_mgr_mem_calibrate_vfifo_center (rank_bgn, g, test_bgn, 1)) {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(g, CAL_STAGE_VFIFO, failed_substage);
return 0;
}
return 1;
}
#endif
#endif
#if READ_AFTER_WRITE_CALIBRATION
//USER VFIFO Calibration -- Read Deskew Calibration after write deskew
alt_u32 rw_mgr_mem_calibrate_vfifo_end (alt_u32 read_group, alt_u32 test_bgn)
{
alt_u32 rank_bgn, sr;
alt_u32 grp_calibrated;
alt_u32 write_group;
TRACE_FUNC("%lu %lu", read_group, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
if (DDRX) {
write_group = read_group;
} else {
write_group = read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
}
//USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 1;
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
// This is the last calibration round, update FOM here
if (! rw_mgr_mem_calibrate_vfifo_center (rank_bgn, write_group, read_group, test_bgn, 0, 1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
#endif
//USER Calibrate LFIFO to find smallest read latency
alt_u32 rw_mgr_mem_calibrate_lfifo (void)
{
alt_u32 found_one;
t_btfld bit_chk;
alt_u32 g;
TRACE_FUNC();
BFM_STAGE("lfifo");
//USER update info for sims
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
//USER Load up the patterns used by read calibration for all ranks
rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
found_one = 0;
do {
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
DPRINT(2, "lfifo: read_lat=%lu", gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks (0, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) {
break;
}
found_one = 1;
//USER reduce read latency and see if things are working
//USER correctly
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
if (found_one) {
//USER add a fudge factor to the read latency that was determined
gbl->curr_read_lat += 2;
#if BFM_MODE
gbl->curr_read_lat += BFM_GBL_GET(lfifo_margin);
#endif
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
#if RUNTIME_CAL_REPORT
RPRINT("LFIFO Calibration ; PHY Read Latency %li", gbl->curr_read_lat);
#endif
DPRINT(2, "lfifo: success: using read_lat=%lu", gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO, CAL_SUBSTAGE_READ_LATENCY);
for (g = 0; g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; g++)
{
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][g].error_stage, CAL_STAGE_LFIFO);
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][g].error_sub_stage, CAL_SUBSTAGE_READ_LATENCY);
}
DPRINT(2, "lfifo: failed at initial read_lat=%lu", gbl->curr_read_lat);
return 0;
}
}
//USER issue write test command.
//USER two variants are provided. one that just tests a write pattern and another that
//USER tests datamask functionality.
#if QDRII
void rw_mgr_mem_calibrate_write_test_issue (alt_u32 group, alt_u32 test_dm)
{
alt_u32 quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
//USER CNTR 1 - This is used to ensure enough time elapses for read data to come back.
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x30);
if (test_dm) {
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
if(quick_write_mode) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x08);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x40);
}
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group) << 2, __RW_MGR_LFSR_WR_RD_DM_BANK_0);
} else {
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
if(quick_write_mode) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x08);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x40);
}
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_LFSR_WR_RD_BANK_0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group) << 2, __RW_MGR_LFSR_WR_RD_BANK_0);
}
}
#else
void rw_mgr_mem_calibrate_write_test_issue (alt_u32 group, alt_u32 test_dm)
{
alt_u32 mcc_instruction;
alt_u32 quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
alt_u32 rw_wl_nop_cycles;
//USER Set counter and jump addresses for the right
//USER number of NOP cycles.
//USER The number of supported NOP cycles can range from -1 to infinity
//USER Three different cases are handled:
//USER
//USER 1. For a number of NOP cycles greater than 0, the RW Mgr looping
//USER mechanism will be used to insert the right number of NOPs
//USER
//USER 2. For a number of NOP cycles equals to 0, the micro-instruction
//USER issuing the write command will jump straight to the micro-instruction
//USER that turns on DQS (for DDRx), or outputs write data (for RLD), skipping
//USER the NOP micro-instruction all together
//USER
//USER 3. A number of NOP cycles equal to -1 indicates that DQS must be turned
//USER on in the same micro-instruction that issues the write command. Then we need
//USER to directly jump to the micro-instruction that sends out the data
//USER
//USER NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters (2 and 3). One
//USER jump-counter (0) is used to perform multiple write-read operations.
//USER one counter left to issue this command in "multiple-group" mode.
#if MULTIPLE_AFI_WLAT
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles_per_group[group];
#else
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
#endif
if(rw_wl_nop_cycles == -1)
{
#if DDRX
//USER CNTR 2 - We want to execute the special write operation that
//USER turns on DQS right away and then skip directly to the instruction that
//USER sends out the data. We set the counter to a large number so that the
//USER jump is always taken
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0xFF);
//USER CNTR 3 - Not used
if(test_dm)
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
}
else
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
#endif
}
else if(rw_wl_nop_cycles == 0)
{
#if DDRX
//USER CNTR 2 - We want to skip the NOP operation and go straight to
//USER the DQS enable instruction. We set the counter to a large number so that the
//USER jump is always taken
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0xFF);
//USER CNTR 3 - Not used
if(test_dm)
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
}
else
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
}
#endif
#if RLDRAMX
//USER CNTR 2 - We want to skip the NOP operation and go straight to
//USER the write data instruction. We set the counter to a large number so that the
//USER jump is always taken
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0xFF);
//USER CNTR 3 - Not used
if(test_dm)
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
}
else
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
}
#endif
}
else
{
//USER CNTR 2 - In this case we want to execute the next instruction and NOT
//USER take the jump. So we set the counter to 0. The jump address doesn't count
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0);
//USER CNTR 3 - Set the nop counter to the number of cycles we need to loop for, minus 1
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1);
if(test_dm)
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
}
else
{
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
}
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
if(quick_write_mode) {
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x08);
} else {
#if ENABLE_NON_DES_CAL
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x08); // Break this up for refresh purposes
#else
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x40);
#endif
}
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction);
//USER CNTR 1 - This is used to ensure enough time elapses for read data to come back.
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x30);
if(test_dm)
{
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
} else {
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
}
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
#if ENABLE_NON_DES_CAL
alt_u32 i = 0;
for (i=0; i < 8; i++)
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
#endif
}
#endif
//USER Test writes, can check for a single bit pass or multiple bit pass
alt_u32 rw_mgr_mem_calibrate_write_test (alt_u32 rank_bgn, alt_u32 write_group, alt_u32 use_dm, alt_u32 all_correct, t_btfld *bit_chk, alt_u32 all_ranks)
{
alt_u32 r;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
alt_u32 vg;
alt_u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_WRITE_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue (write_group*RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, use_dm);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
DPRINT(2, "write_test(%lu,%lu,%lu) :[%lu,%lu] " BTFLD_FMT " & ~%x => " BTFLD_FMT " => " BTFLD_FMT,
write_group, use_dm, all_correct, r, vg,
correct_mask_vg, IORD_32DIRECT(BASE_RW_MGR, 0), correct_mask_vg & ~IORD_32DIRECT(BASE_RW_MGR, 0),
tmp_bit_chk);
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct)
{
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "write_test(%lu,%lu,ALL) : " BTFLD_FMT " == " BTFLD_FMT " => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask, (long unsigned int)(*bit_chk == param->write_correct_mask));
return (*bit_chk == param->write_correct_mask);
}
else
{
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "write_test(%lu,%lu,ONE) : " BTFLD_FMT " != " BTFLD_FMT " => %lu", write_group, use_dm,
*bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0));
return (*bit_chk != 0x00);
}
}
static inline alt_u32 rw_mgr_mem_calibrate_write_test_all_ranks (alt_u32 write_group, alt_u32 use_dm, alt_u32 all_correct, t_btfld *bit_chk)
{
return rw_mgr_mem_calibrate_write_test (0, write_group, use_dm, all_correct, bit_chk, 1);
}
//USER level the write operations
#if DYNAMIC_CALIBRATION_MODE || STATIC_QUICK_CALIBRATION
#if QDRII
//USER Write Levelling -- Quick Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
TRACE_FUNC("%lu %lu", g, test_bgn);
return 0;
}
#endif
#if RLDRAMX
#if !ENABLE_SUPER_QUICK_CALIBRATION
//USER Write Levelling -- Quick Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 d;
t_btfld bit_chk;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
reg_file_set_group(g);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (d > IO_IO_OUT1_DELAY_MAX) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
return 1;
}
#else
//USER Write Levelling -- Super Quick Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 d;
t_btfld bit_chk;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER The first call to this function will calibrate all groups
if (g != 0) {
return 1;
}
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
reg_file_set_group(g);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (d > IO_IO_OUT1_DELAY_MAX) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
//USER Now copy the calibration settings to all other groups
for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_WRITE_DQS; g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; g++, test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
//USER Verify that things worked as expected
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WLEVEL_COPY);
return 0;
}
}
return 1;
}
#endif
#endif
#if DDRX
#if !ENABLE_SUPER_QUICK_CALIBRATION
//USER Write Levelling -- Quick Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 p;
t_btfld bit_chk;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
return 1;
}
#else
//USER Write Levelling -- Super Quick Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 p;
t_btfld bit_chk;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER The first call to this function will calibrate all groups
if (g != 0) {
return 1;
}
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
reg_file_set_sub_stage(CAL_SUBSTAGE_WLEVEL_COPY);
//USER Now copy the calibration settings to all other groups
for (g = 1, test_bgn = RW_MGR_MEM_DQ_PER_READ_DQS; (g < RW_MGR_MEM_IF_READ_DQS_WIDTH); g++, test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, g);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
//USER Verify that things worked as expected
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WLEVEL_COPY);
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0);
return 0;
}
}
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0);
return 1;
}
#endif
#endif
#endif
#if DYNAMIC_CALIBRATION_MODE || STATIC_FULL_CALIBRATION
#if QDRII
//USER Write Levelling -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
TRACE_FUNC("%lu %lu", g, test_bgn);
return 0;
}
#endif
#if RLDRAMX
//USER Write Levelling -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 d;
t_btfld bit_chk;
alt_u32 work_bgn, work_end;
alt_u32 d_bgn, d_end;
alt_u32 found_begin;
TRACE_FUNC("%lu %lu", g, test_bgn);
BFM_STAGE("wlevel");
ALTERA_ASSERT(g < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum delays for the sweep
//USER update info for sims
reg_file_set_group(g);
//USER starting and end range where writes work
scc_mgr_spread_out2_delay_all_ranks (g,test_bgn);
work_bgn = 0;
work_end = 0;
//USER step 1: find first working dtap, increment in dtaps
found_begin = 0;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++, work_bgn += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: begin: d=%lu", d);
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
found_begin = 1;
d_bgn = d;
break;
} else {
recover_mem_device_after_ck_dqs_violation();
}
}
if (!found_begin) {
//USER fail, cannot find first working delay
DPRINT(2, "wlevel: failed to find first working delay", d);
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: found begin d=%lu work_bgn=%lu", d_bgn, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d,d_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps,work_bgn);
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
//USER step 2 : find first non-working dtap, increment in dtaps
work_end = work_bgn;
d = d + 1;
for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: end: d=%lu", d);
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
recover_mem_device_after_ck_dqs_violation();
break;
}
}
d_end = d - 1;
if (d_end >= d_bgn) {
//USER we have a working range
} else {
//USER nil range
//Note: don't think this is possible
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: found end: d=%lu work_end=%lu", d_end, work_end);
BFM_GBL_SET(dqs_wlevel_right_edge[g].d,d_end);
BFM_GBL_SET(dqs_wlevel_right_edge[g].ps,work_end);
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][g].dqdqs_start, work_bgn);
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][g].dqdqs_end, work_end);
//USER center
d = (d_end + d_bgn) / 2;
DPRINT(2, "wlevel: found middle: d=%lu work_mid=%lu", d, (work_end + work_bgn)/2);
BFM_GBL_SET(dqs_wlevel_mid[g].d,d);
BFM_GBL_SET(dqs_wlevel_mid[g].ps,(work_end + work_bgn)/2);
scc_mgr_zero_group (g, test_bgn, 1);
scc_mgr_apply_group_all_out_delay_add_all_ranks (g, test_bgn, d);
return 1;
}
#endif
#if DDRX
#if NEWVERSION_WL
//USER Write Levelling -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 p, d, sr;
#if CALIBRATE_BIT_SLIPS
#if QUARTER_RATE_MODE
alt_32 num_additional_fr_cycles = 3;
#elif HALF_RATE_MODE
alt_32 num_additional_fr_cycles = 1;
#else
alt_32 num_additional_fr_cycles = 0;
#endif
#if MULTIPLE_AFI_WLAT
num_additional_fr_cycles++;
#endif
#else
alt_u32 num_additional_fr_cycles = 0;
#endif
t_btfld bit_chk;
alt_u32 work_bgn, work_end, work_mid;
alt_u32 tmp_delay;
alt_u32 found_begin;
alt_u32 dtaps_per_ptap;
TRACE_FUNC("%lu %lu", g, test_bgn);
BFM_STAGE("wlevel");
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
#if USE_DQS_TRACKING
#if HHP_HPS
dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0);
#else
dtaps_per_ptap = IORD_32DIRECT(TRK_DTAPS_PER_PTAP, 0);
#endif
#else
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
}
dtaps_per_ptap--;
tmp_delay = 0;
#endif
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
//USER starting and end range where writes work
scc_mgr_spread_out2_delay_all_ranks (g,test_bgn);
work_bgn = 0;
work_end = 0;
//USER step 1: find first working phase, increment in ptaps, and then in dtaps if ptaps doesn't find a working phase
found_begin = 0;
tmp_delay = 0;
for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
work_bgn = tmp_delay;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "wlevel: begin-1: p=%lu d=%lu", p, d);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH) {
//USER fail, cannot find first working phase
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: first valid p=%lu d=%lu", p, d);
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
COV(WLEVEL_PHASE_PTAP_OVERLAP);
work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
//USER step 2: if we have room, back off by one and increment in dtaps
if (p > 0) {
#ifdef BFM_MODE
int found = 0;
#endif
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: begin-2: p=%lu d=%lu", (p-1), d);
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
#ifdef BFM_MODE
found = 1;
#endif
work_bgn = tmp_delay;
break;
}
}
#ifdef BFM_MODE
{
alt_u32 d2;
alt_u32 p2;
if (found) {
d2 = d;
p2 = p - 1;
} else {
d2 = 0;
p2 = p;
}
DPRINT(2, "wlevel: found begin-A: p=%lu d=%lu ps=%lu", p2, d2, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p,p2);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d,d2);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps,work_bgn);
}
#endif
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, 0);
} else {
DPRINT(2, "wlevel: found begin-B: p=%lu d=%lu ps=%lu", p, d, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p,p);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d,d);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps,work_bgn);
}
//USER step 3: go forward from working phase to non working phase, increment in ptaps
for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH; p++, work_end += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "wlevel: end-0: p=%lu d=%lu", p, (long unsigned int)0);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
//USER step 4: back off one from last, increment in dtaps
//USER The actual increment is done outside the if/else statement since it is shared with other code
p = p - 1;
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
work_end -= IO_DELAY_PER_OPA_TAP;
d = 0;
} else {
//USER step 5: Window doesn't cover phase tap, just increment dtaps until failure
//USER The actual increment is done outside the if/else statement since it is shared with other code
COV(WLEVEL_PHASE_PTAP_NO_OVERLAP);
work_end = work_bgn;
DPRINT(2, "wlevel: found begin-C: p=%lu d=%lu ps=%lu", p, d, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p,p);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d,d);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps,work_bgn);
}
//USER The actual increment until failure
for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: end: p=%lu d=%lu", p, d);
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
scc_mgr_zero_group (g, test_bgn, 1);
work_end -= IO_DELAY_PER_DCHAIN_TAP;
if (work_end >= work_bgn) {
//USER we have a working range
} else {
//USER nil range
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: found end: p=%lu d=%lu; range: [%lu,%lu]", p, d-1, work_bgn, work_end);
BFM_GBL_SET(dqs_wlevel_right_edge[g].p,p);
BFM_GBL_SET(dqs_wlevel_right_edge[g].d,d-1);
BFM_GBL_SET(dqs_wlevel_right_edge[g].ps,work_end);
for(sr = 0; sr < NUM_SHADOW_REGS; sr++) {
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[sr][g].dqdqs_start, work_bgn);
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[sr][g].dqdqs_end, work_end);
}
//USER center
work_mid = (work_bgn + work_end) / 2;
DPRINT(2, "wlevel: work_mid=%ld", work_mid);
tmp_delay = 0;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP);
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_OPA_TAP;
p--;
}
while (p > IO_DQDQS_OUT_PHASE_MAX) {
tmp_delay -= IO_DELAY_PER_OPA_TAP;
p--;
}
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
DPRINT(2, "wlevel: p=%lu tmp_delay=%lu left=%lu", p, tmp_delay, work_mid - tmp_delay);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP);
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_DCHAIN_TAP;
d--;
}
DPRINT(2, "wlevel: p=%lu d=%lu tmp_delay=%lu left=%lu", p, d, tmp_delay, work_mid - tmp_delay);
scc_mgr_apply_group_all_out_delay_add_all_ranks (g, test_bgn, d);
DPRINT(2, "wlevel: found middle: p=%lu d=%lu", p, d);
BFM_GBL_SET(dqs_wlevel_mid[g].p,p);
BFM_GBL_SET(dqs_wlevel_mid[g].d,d);
BFM_GBL_SET(dqs_wlevel_mid[g].ps,work_mid);
return 1;
}
#else
//USER Write Levelling -- Full Calibration
alt_u32 rw_mgr_mem_calibrate_wlevel (alt_u32 g, alt_u32 test_bgn)
{
alt_u32 p, d;
t_btfld bit_chk;
alt_u32 work_bgn, work_end, work_mid;
alt_u32 tmp_delay;
TRACE_FUNC("%lu %lu", g, test_bgn);
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
//USER starting and end range where writes work
work_bgn = 0;
work_end = 0;
//USER step 1: find first working phase, increment in ptaps
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX) {
//USER fail, cannot find first working phase
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
//USER step 2: if we have room, back off by one and increment in dtaps
if (p > 0) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
work_bgn = tmp_delay;
break;
}
}
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, 0);
}
//USER step 3: go forward from working phase to non working phase, increment in ptaps
for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
//USER step 4: back off one from last, increment in dtaps
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
work_end -= IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, 0);
if (work_end > work_bgn) {
//USER we have a working range
} else {
//USER nil range
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
return 0;
}
//USER center
work_mid = (work_bgn + work_end) / 2;
tmp_delay = 0;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP);
tmp_delay -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP);
scc_mgr_apply_group_all_out_delay_add_all_ranks (g, test_bgn, d - 1);
return 1;
}
#endif
#endif
#endif
//USER center all windows. do per-bit-deskew to possibly increase size of certain windows
#if NEWVERSION_WRDESKEW
alt_u32 rw_mgr_mem_calibrate_writes_center (alt_u32 rank_bgn, alt_u32 write_group, alt_u32 test_bgn)
{
alt_u32 i, p, min_index;
alt_32 d;
//USER Store these as signed since there are comparisons with signed numbers
t_btfld bit_chk;
#if QDRII
t_btfld tmp_bit_chk;
t_btfld tmp_mask;
t_btfld mask;
#endif
t_btfld sticky_bit_chk;
alt_32 left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
alt_32 right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
alt_32 mid;
alt_32 mid_min, orig_mid_min;
alt_32 new_dqs, start_dqs, shift_dq;
#if RUNTIME_CAL_REPORT
alt_32 new_dq[RW_MGR_MEM_DQ_PER_WRITE_DQS];
#endif
alt_32 dq_margin, dqs_margin, dm_margin;
alt_u32 stop;
TRACE_FUNC("%lu %lu", write_group, test_bgn);
BFM_STAGE("writes_center");
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
dm_margin = 0;
start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
select_curr_shadow_reg_using_rank(rank_bgn);
//USER per-bit deskew
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
//USER Search for the left edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
DPRINT(2, "write_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu [bit_chk=" BTFLD_FMT "]",
d, sticky_bit_chk, param->write_correct_mask, stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the left_edge
left_edge[i] = d;
} else {
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
DPRINT(2, "write_center[l,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
//USER Reset DQ delay chains to 0
scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
DPRINT(2, "write_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
}
//USER Reset sticky bit (except for bits where we have seen the left edge)
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
{
break;
}
}
//USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d + start_dqs);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0);
if (stop) {
recover_mem_device_after_ck_dqs_violation();
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
DPRINT(2, "write_center (right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu", d, sticky_bit_chk, param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
DPRINT(2, "write_center[r,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
#if ENABLE_TCL_DEBUG
// Store all observed margins
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
alt_u32 dq = write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + i;
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
TCLRPT_SET(debug_cal_report->cal_dq_out_margins[curr_shadow_reg][dq].left_edge, left_edge[i]);
TCLRPT_SET(debug_cal_report->cal_dq_out_margins[curr_shadow_reg][dq].right_edge, right_edge[i]);
}
#endif
//USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i], i, right_edge[i]);
BFM_GBL_SET(dq_write_left_edge[write_group][i],left_edge[i]);
BFM_GBL_SET(dq_write_right_edge[write_group][i],right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
//USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
//USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
//USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
if (mid_min > 0) {
mid_min++;
}
mid_min = mid_min / 2;
DPRINT(1, "write_center: mid_min=%ld", mid_min);
//USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
#if ENABLE_DQS_OUT_CENTERING
if (DDRX || RLDRAMX) {
new_dqs = start_dqs - mid_min;
DPRINT(2, "write_center: new_dqs(1)=%ld", new_dqs);
if (new_dqs > IO_IO_OUT1_DELAY_MAX) {
new_dqs = IO_IO_OUT1_DELAY_MAX;
} else if (new_dqs < 0) {
new_dqs = 0;
}
mid_min = start_dqs - new_dqs;
new_dqs = start_dqs - mid_min;
} else {
new_dqs = start_dqs;
mid_min = 0;
}
#else
new_dqs = start_dqs;
mid_min = 0;
#endif
DPRINT(1, "write_center: start_dqs=%ld new_dqs=%ld mid_min=%ld", start_dqs, new_dqs, mid_min);
//USER Initialize data for export structures
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
//USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
//USER Use values before divide by 2 to reduce round off error
shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index]))/2 + (orig_mid_min - mid_min);
DPRINT(2, "write_center: before: shift_dq[%lu]=%ld", i, shift_dq);
if (shift_dq + (alt_32)READ_SCC_DQ_OUT1_DELAY(i) > (alt_32)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (alt_32)IO_IO_OUT1_DELAY_MAX - READ_SCC_DQ_OUT1_DELAY(i);
} else if (shift_dq + (alt_32)READ_SCC_DQ_OUT1_DELAY(i) < 0) {
shift_dq = -(alt_32)READ_SCC_DQ_OUT1_DELAY(i);
}
#if RUNTIME_CAL_REPORT
new_dq[i] = shift_dq;
#endif
DPRINT(2, "write_center: after: shift_dq[%lu]=%ld", i, shift_dq);
scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + shift_dq);
scc_mgr_load_dq (i);
DPRINT(2, "write_center: margin[%lu]=[%ld,%ld]", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
//USER To determine values for export structures
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
dq_margin = left_edge[i] - shift_dq + (-mid_min);
}
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
}
//USER Move DQS
if (QDRII) {
scc_mgr_set_group_dqs_io_and_oct_out1_gradual (write_group, new_dqs);
} else {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, new_dqs);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
#if RUNTIME_CAL_REPORT
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
RPRINT("Write Deskew ; DQ %2lu ; Rank %lu ; Left edge %3li ; Right edge %3li ; DQ delay %2li ; DQS delay %2li", write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + i, rank_bgn, left_edge[i], right_edge[i], new_dq[i], new_dqs);
}
#endif
//////////////////////
//////////////////////
//USER Centre DM
//////////////////////
//////////////////////
BFM_STAGE("dm_center");
DPRINT(2, "write_center: DM");
#if RLDRAMX
//Note: this is essentially the same as DDR with the exception of the dm_ global accounting
//USER Determine if first group in device to initialize left and right edges
if (!is_write_group_enabled_for_dm(write_group))
{
DPRINT(2, "dm_calib: skipping since not last in group");
}
else
{
// last in the group, so we need to do DM
DPRINT(2, "dm_calib: calibrating DM since last in group");
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
sticky_bit_chk = 0;
//USER Search for the left edge of the window for the DM bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dm_out1_delay (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the write test doesn't pass AND when we've seen a passing write before
if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
DPRINT(2, "dm_calib: left=%lu passed", d);
left_edge[0] = d;
} else {
DPRINT(2, "dm_calib: left=%lu failed", d);
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[0] = -(d + 1);
} else {
//USER left edge has been seen, so this failure marks the left edge, and we are done
break;
}
}
DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld right_edge: %ld",
d, left_edge[0], right_edge[0]);
}
DPRINT(2, "dm_calib left done: left_edge: %ld right_edge: %ld",
left_edge[0], right_edge[0]);
//USER Reset DM delay chains to 0
scc_mgr_apply_group_dm_out1_delay (write_group, 0);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
if ((left_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) && (right_edge[0] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
DPRINT(2, "dm_calib: reset right_edge: %ld", right_edge[0]);
}
//USER Search for the right edge of the window for the DM bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
// Note: This only shifts DQS, so are we limiting ourselve to
// width of DQ unnecessarily
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d + new_dqs);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the test fails and we've seen passing test already
if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
DPRINT(2, "dm_calib: right=%lu passed", d);
right_edge[0] = d;
} else {
recover_mem_device_after_ck_dqs_violation();
DPRINT(2, "dm_calib: right=%lu failed", d);
if (d != 0) {
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
if (right_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[0] = -(d + 1);
} else {
break;
}
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[0] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[0] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[0] = -1;
// we're done
break;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[0] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[0] = -(d + 1);
}
}
}
DPRINT(2, "dm_calib[l,d=%lu]: left_edge: %ld right_edge: %ld",
d, left_edge[0], right_edge[0]);
}
DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0], right_edge[0]);
#if BFM_MODE
// need to update for all groups covered by this dm
for (i = write_group+1-(RW_MGR_MEM_IF_WRITE_DQS_WIDTH/RW_MGR_MEM_DATA_MASK_WIDTH); i <= write_group; i++)
{
DPRINT(3, "dm_calib: left[%d]=%ld right[%d]=%ld", i, left_edge[0], i, right_edge[0]);
BFM_GBL_SET(dm_left_edge[i][0],left_edge[0]);
BFM_GBL_SET(dm_right_edge[i][0],right_edge[0]);
}
#endif
//USER Move DQS (back to orig)
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, new_dqs);
//USER move DM
//USER Find middle of window for the DM bit
mid = (left_edge[0] - right_edge[0]) / 2;
if (mid < 0) {
mid = 0;
}
scc_mgr_apply_group_dm_out1_delay (write_group, mid);
dm_margin = left_edge[0];
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
left_edge[0], right_edge[0], mid, dm_margin);
} // end of DM calibration
#endif
#if DDRX
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
alt_32 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
alt_32 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
alt_32 bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
alt_32 end_best = IO_IO_OUT1_DELAY_MAX + 1;
alt_32 win_best = 0;
//USER Search for the/part of the window with DM shift
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d-=DELTA_D) {
scc_mgr_apply_group_dm_out1_delay (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
//USE Set current end of the window
end_curr = -d;
//USER If a starting edge of our window has not been seen this is our current start of the DM window
if(bgn_curr == IO_IO_OUT1_DELAY_MAX + 1){
bgn_curr = -d;
}
//USER If current window is bigger than best seen. Set best seen to be current window
if((end_curr-bgn_curr+1) > win_best ){
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
//USER We just saw a failing test. Reset temp edge
bgn_curr=IO_IO_OUT1_DELAY_MAX + 1;
end_curr=IO_IO_OUT1_DELAY_MAX + 1;
}
}
//USER Reset DM delay chains to 0
scc_mgr_apply_group_dm_out1_delay (write_group, 0);
//USER Check to see if the current window nudges up aganist 0 delay. If so we need to continue the search by shifting DQS otherwise DQS search begins as a new search
if(end_curr!=0) {
bgn_curr=IO_IO_OUT1_DELAY_MAX + 1;
end_curr=IO_IO_OUT1_DELAY_MAX + 1;
}
//USER Search for the/part of the window with DQS shifts
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d+=DELTA_D) {
// Note: This only shifts DQS, so are we limiting ourselve to
// width of DQ unnecessarily
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d + new_dqs);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
//USE Set current end of the window
end_curr = d;
//USER If a beginning edge of our window has not been seen this is our current begin of the DM window
if(bgn_curr == IO_IO_OUT1_DELAY_MAX + 1){
bgn_curr = d;
}
//USER If current window is bigger than best seen. Set best seen to be current window
if((end_curr-bgn_curr+1) > win_best){
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
//USER We just saw a failing test. Reset temp edge
recover_mem_device_after_ck_dqs_violation();
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
//USER Early exit optimization: if ther remaining delay chain space is less than already seen largest window we can exit
if((win_best-1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d)){
break;
}
}
}
//USER assign left and right edge for cal and reporting;
left_edge[0] = -1*bgn_best;
right_edge[0] = end_best;
DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0], right_edge[0]);
BFM_GBL_SET(dm_left_edge[write_group][0],left_edge[0]);
BFM_GBL_SET(dm_right_edge[write_group][0],right_edge[0]);
//USER Move DQS (back to orig)
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, new_dqs);
//USER Move DM
//USER Find middle of window for the DM bit
mid = (left_edge[0] - right_edge[0]) / 2;
//USER only move right, since we are not moving DQS/DQ
if (mid < 0) {
mid = 0;
}
//dm_marign should fail if we never find a window
if(win_best==0){
dm_margin = -1;
}else{
dm_margin = left_edge[0] - mid;
}
scc_mgr_apply_group_dm_out1_delay(write_group, mid);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
left_edge[0], right_edge[0], mid, dm_margin);
#endif
#if QDRII
sticky_bit_chk = 0;
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
left_edge[i] = right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
mask = param->dm_correct_mask;
//USER Search for the left edge of the window for the DM bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dm_out1_delay (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass for all bits (as they've already been calibrated)
stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ONE_BIT, &bit_chk, 0);
DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx sticky_bit_chk=%llx mask=%llx",
d, stop, bit_chk, sticky_bit_chk, param->write_correct_mask);
tmp_bit_chk = bit_chk;
tmp_mask = mask;
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
if ( (tmp_bit_chk & mask) == mask ) {
sticky_bit_chk = sticky_bit_chk | tmp_mask;
}
tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
}
stop = stop && (sticky_bit_chk == param->write_correct_mask);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
DPRINT(2, "dm_calib[l,i=%lu] d=%lu bit_chk&dm_mask=" BTFLD_FMT " == " BTFLD_FMT, i, d,
bit_chk & mask, mask);
if ((bit_chk & mask) == mask) {
DPRINT(2, "dm_calib: left[%lu]=%lu", i, d);
left_edge[i] = d;
} else {
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
}
}
}
//USER Reset DM delay chains to 0
scc_mgr_apply_group_dm_out1_delay (write_group, 0);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
DPRINT(2, "dm_calib: reset right_edge: %d", right_edge[i]);
}
}
//USER Search for the right edge of the window for the DM bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d + new_dqs);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
rw_mgr_mem_dll_lock_wait();
//USER Stop searching when the read test doesn't pass for all bits (as they've already been calibrated)
stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ONE_BIT, &bit_chk, 0);
DPRINT(2, "dm_calib[l,d=%lu] stop=%ld bit_chk=%llx sticky_bit_chk=%llx mask=%llx",
d, stop, bit_chk, sticky_bit_chk, param->write_correct_mask);
tmp_bit_chk = bit_chk;
tmp_mask = mask;
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
if ( (tmp_bit_chk & mask) == mask ) {
sticky_bit_chk = sticky_bit_chk | tmp_mask;
}
tmp_bit_chk = tmp_bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
tmp_mask = tmp_mask << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
}
stop = stop && (sticky_bit_chk == param->write_correct_mask);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
DPRINT(2, "dm_calib[r,i=%lu] d=%lu bit_chk&dm_mask=" BTFLD_FMT " == " BTFLD_FMT, i, d,
bit_chk & mask, mask);
if ((bit_chk & mask) == mask) {
right_edge[i] = d;
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
// we're done
break;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
}
}
}
//USER Move DQS (back to orig)
scc_mgr_set_group_dqs_io_and_oct_out1_gradual (write_group, new_dqs);
//USER Move DM
dm_margin = IO_IO_OUT1_DELAY_MAX;
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
//USER Find middle of window for the DM bit
mid = (left_edge[i] - right_edge[i]) / 2;
DPRINT(2, "dm_calib[mid,i=%lu] left=%ld right=%ld mid=%ld", i, left_edge[i], right_edge[i], mid);
BFM_GBL_SET(dm_left_edge[write_group][i],left_edge[i]);
BFM_GBL_SET(dm_right_edge[write_group][i],right_edge[i]);
if (mid < 0) {
mid = 0;
}
scc_mgr_set_dm_out1_delay(write_group, i, mid);
scc_mgr_load_dm (i);
if ((left_edge[i] - mid) < dm_margin) {
dm_margin = left_edge[i] - mid;
}
}
#endif
// Store observed DM margins
#if RLDRAMX
if (is_write_group_enabled_for_dm(write_group))
{
TCLRPT_SET(debug_cal_report->cal_dm_margins[curr_shadow_reg][write_group][0].left_edge, left_edge[0]);
TCLRPT_SET(debug_cal_report->cal_dm_margins[curr_shadow_reg][write_group][0].right_edge, right_edge[0]);
}
#else
for (i = 0; i < RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP; i++) {
TCLRPT_SET(debug_cal_report->cal_dm_margins[curr_shadow_reg][write_group][i].left_edge, left_edge[i]);
TCLRPT_SET(debug_cal_report->cal_dm_margins[curr_shadow_reg][write_group][i].right_edge, right_edge[i]);
}
#endif
#if RUNTIME_CAL_REPORT
for (i = 0; i < RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP; i++) {
RPRINT("DM Deskew ; Group %lu ; Left edge %3li; Right edge %3li; DM delay %2li", write_group, left_edge[i], right_edge[i], mid);
}
#endif
//USER Export values
gbl->fom_out += dq_margin + dqs_margin;
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][write_group].dqs_margin, dqs_margin);
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][write_group].dq_margin, dq_margin);
#if RLDRAMX
if (is_write_group_enabled_for_dm(write_group))
{
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][write_group].dm_margin, dm_margin);
}
#else
TCLRPT_SET(debug_cal_report->cal_dqs_out_margins[curr_shadow_reg][write_group].dm_margin, dm_margin);
#endif
TCLRPT_SET(debug_summary_report->fom_out, debug_summary_report->fom_out + (dq_margin + dqs_margin));
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][write_group].fom_out, (dq_margin + dqs_margin));
DPRINT(2, "write_center: dq_margin=%ld dqs_margin=%ld dm_margin=%ld", dq_margin, dqs_margin, dm_margin);
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
#else // !NEWVERSION_WRDESKEW
alt_u32 rw_mgr_mem_calibrate_writes_center (alt_u32 rank_bgn, alt_u32 write_group, alt_u32 test_bgn)
{
alt_u32 i, p, d;
alt_u32 mid;
t_btfld bit_chk, sticky_bit_chk;
alt_u32 max_working_dq[RW_MGR_MEM_DQ_PER_WRITE_DQS];
alt_u32 max_working_dm[RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
alt_u32 dq_margin, dqs_margin, dm_margin;
alt_u32 start_dqs;
alt_u32 stop;
TRACE_FUNC("%lu %lu", write_group, test_bgn);
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
//USER per-bit deskew
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
max_working_dq[i] = 0;
}
for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0)) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
max_working_dq[i] = d;
}
bit_chk = bit_chk >> 1;
}
}
}
scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, 0);
//USER determine minimum of maximums
dq_margin = IO_IO_OUT1_DELAY_MAX;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (max_working_dq[i] < dq_margin) {
dq_margin = max_working_dq[i];
}
}
//USER add delay to center DQ windows
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
if (max_working_dq[i] > dq_margin) {
scc_mgr_set_dq_out1_delay(write_group, i, max_working_dq[i] - dq_margin);
} else {
scc_mgr_set_dq_out1_delay(write_group, i, 0);
}
scc_mgr_load_dq (p, i);
}
//USER sweep DQS window, may potentially have more window due to per-bit-deskew
start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
for (d = start_dqs + 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ALL_BITS, &bit_chk, 0)) {
break;
}
}
scc_mgr_set_dqs_out1_delay(write_group, start_dqs);
scc_mgr_set_oct_out1_delay(write_group, start_dqs);
dqs_margin = d - start_dqs - 1;
//USER time to center, +1 so that we don't go crazy centering DQ
mid = (dq_margin + dqs_margin + 1) / 2;
gbl->fom_out += dq_margin + dqs_margin;
TCLRPT_SET(debug_summary_report->fom_out, debug_summary_report->fom_out + (dq_margin + dqs_margin));
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][grp].fom_out, (dq_margin + dqs_margin));
#if ENABLE_DQS_OUT_CENTERING
//USER center DQS ... if the headroom is setup properly we shouldn't need to
if (DDRX) {
if (dqs_margin > mid) {
scc_mgr_set_dqs_out1_delay(write_group, READ_SCC_DQS_IO_OUT1_DELAY() + dqs_margin - mid);
scc_mgr_set_oct_out1_delay(write_group, READ_SCC_OCT_OUT1_DELAY(write_group) + dqs_margin - mid);
}
}
#endif
scc_mgr_load_dqs_io ();
scc_mgr_load_dqs_for_write_group (write_group);
//USER center dq
if (dq_margin > mid) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + dq_margin - mid);
scc_mgr_load_dq (p, i);
}
dqs_margin += dq_margin - mid;
dq_margin -= dq_margin - mid;
}
//USER do dm centering
if (!RLDRAMX) {
dm_margin = IO_IO_OUT1_DELAY_MAX;
if (QDRII) {
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
max_working_dm[i] = 0;
}
}
for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dm_out1_delay (write_group, d);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (DDRX) {
if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
max_working_dm[0] = d;
} else {
break;
}
} else {
stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
if ((bit_chk & param->dm_correct_mask) == param->dm_correct_mask) {
max_working_dm[i] = d;
}
bit_chk = bit_chk >> (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH);
}
}
}
}
i = 0;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
if (max_working_dm[i] > mid) {
scc_mgr_set_dm_out1_delay(write_group, i, max_working_dm[i] - mid);
} else {
scc_mgr_set_dm_out1_delay(write_group, i, 0);
}
scc_mgr_load_dm (i);
if (max_working_dm[i] < dm_margin) {
dm_margin = max_working_dm[i];
}
}
} else {
dm_margin = 0;
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
return (dq_margin + dqs_margin) > 0;
}
#endif
//USER calibrate the write operations
alt_u32 rw_mgr_mem_calibrate_writes (alt_u32 rank_bgn, alt_u32 g, alt_u32 test_bgn)
{
//USER update info for sims
TRACE_FUNC("%lu %lu", g, test_bgn);
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center (rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
// helpful for creating eye diagrams
// TODO: This is for the TCL DBG... but obviously it serves no purpose...
// Decide what to do with it!
void rw_mgr_mem_calibrate_eye_diag_aid (void)
{
// no longer exists
}
// TODO: This needs to be update to properly handle the number of failures
// Right now it only checks if the write test was successful or not
alt_u32 rw_mgr_mem_calibrate_full_test (alt_u32 min_correct, t_btfld *bit_chk, alt_u32 test_dm)
{
alt_u32 g;
alt_u32 success = 0;
alt_u32 run_groups = ~param->skip_groups;
TRACE_FUNC("%lu %lu", min_correct, test_dm);
for (g = 0; g < RW_MGR_MEM_IF_READ_DQS_WIDTH; g++) {
if (run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1))
{
success = rw_mgr_mem_calibrate_write_test_all_ranks (g, test_dm, PASS_ALL_BITS, bit_chk);
}
run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP;
}
return success;
}
#if ENABLE_TCL_DEBUG
// see how far we can push a particular DQ pin before complete failure on input and output sides
// NOTE: if ever executing a run_*_margining function outside of calibration context you must first issue IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 1);
void run_dq_margining (alt_u32 rank_bgn, alt_u32 write_group)
{
alt_u32 test_num;
alt_u32 read_group;
alt_u32 read_test_bgn;
alt_u32 subdq;
alt_u32 dq;
alt_u32 delay;
alt_u32 calibrated_delay;
alt_u32 working_cnt;
t_btfld bit_chk;
t_btfld bit_chk_test = 0;
t_btfld bit_chk_mask;
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
select_curr_shadow_reg_using_rank(rank_bgn);
// Load the read patterns
rw_mgr_mem_calibrate_read_load_patterns (rank_bgn, 0);
// sweep input delays
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS)
{
ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
for (subdq = 0; subdq < RW_MGR_MEM_DQ_PER_READ_DQS; subdq++)
{
dq = read_group*RW_MGR_MEM_DQ_PER_READ_DQS + subdq;
ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
calibrated_delay = debug_cal_report->cal_dq_settings[curr_shadow_reg][dq].dq_in_delay;
working_cnt = 0;
bit_chk_test = 0;
// Find the left edge
for (delay = calibrated_delay; delay <= IO_IO_IN_DELAY_MAX; delay++)
{
WRITE_SCC_DQ_IN_DELAY((subdq + read_test_bgn), delay);
scc_mgr_load_dq (subdq + read_test_bgn);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
for (test_num = 0; test_num < NUM_READ_TESTS; test_num++)
{
rw_mgr_mem_calibrate_read_test (rank_bgn, read_group, 1, PASS_ONE_BIT, &bit_chk, 0, 0);
if (test_num == 0)
{
bit_chk_test = bit_chk;
}
else
{
bit_chk_test &= bit_chk;
}
}
// Check only the bit we are testing
bit_chk_mask = (bit_chk_test & (((t_btfld) 1) << ((t_btfld) subdq)));
if (bit_chk_mask == 0)
{
break;
}
working_cnt++;
}
// Restore the settings
WRITE_SCC_DQ_IN_DELAY((subdq + read_test_bgn), calibrated_delay);
scc_mgr_load_dq (subdq + read_test_bgn);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dq_in_margins[curr_shadow_reg][dq].min_working_setting, working_cnt);
// Find the right edge
calibrated_delay = debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][read_group].dqs_bus_in_delay;
working_cnt = 0;
for (delay = calibrated_delay; delay <= IO_DQS_IN_DELAY_MAX; delay++)
{
WRITE_SCC_DQS_IN_DELAY(read_group, delay);
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
for (test_num = 0; test_num < NUM_READ_TESTS; test_num++)
{
rw_mgr_mem_calibrate_read_test (rank_bgn, read_group, 1, PASS_ONE_BIT, &bit_chk, 0, 0);
if (test_num == 0)
{
bit_chk_test = bit_chk;
}
else
{
bit_chk_test &= bit_chk;
}
}
// Check only the bit we are testing
bit_chk_mask = (bit_chk_test & (((t_btfld)1) << ((t_btfld)(subdq))));
if (bit_chk_mask == 0)
{
break;
}
working_cnt++;
}
// Restore the settings
WRITE_SCC_DQS_IN_DELAY(read_group, calibrated_delay);
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dq_in_margins[curr_shadow_reg][dq].max_working_setting, working_cnt);
}
}
// sweep output delays
for (subdq = 0; subdq < RW_MGR_MEM_DQ_PER_WRITE_DQS; subdq++)
{
dq = write_group*RW_MGR_MEM_DQ_PER_WRITE_DQS + subdq;
calibrated_delay = debug_cal_report->cal_dq_settings[curr_shadow_reg][dq].dq_out_delay1;
working_cnt = 0;
// Find the left edge
for (delay = calibrated_delay; delay <= IO_IO_OUT1_DELAY_MAX; delay++)
{
WRITE_SCC_DQ_OUT1_DELAY(subdq, delay);
scc_mgr_load_dq (subdq);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
for (test_num = 0; test_num < NUM_WRITE_TESTS; test_num++)
{
rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ALL_BITS, &bit_chk, 0);
if (test_num == 0)
{
bit_chk_test = bit_chk;
}
else
{
bit_chk_test &= bit_chk;
}
}
// Check only the bit we are testing
bit_chk_mask = (bit_chk_test & (((t_btfld)1) << ((t_btfld)subdq)));
if (bit_chk_mask == 0)
{
break;
}
working_cnt++;
}
// Restore the settings
WRITE_SCC_DQ_OUT1_DELAY(subdq, calibrated_delay);
scc_mgr_load_dq (subdq);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dq_out_margins[curr_shadow_reg][dq].min_working_setting, working_cnt);
// Find the right edge
calibrated_delay = debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqs_out_delay1;
working_cnt = 0;
for (delay = calibrated_delay; delay <= IO_IO_OUT1_DELAY_MAX; delay++)
{
WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
scc_mgr_load_dqs_io();
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
for (test_num = 0; test_num < NUM_WRITE_TESTS; test_num++)
{
rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0);
if (test_num == 0)
{
bit_chk_test = bit_chk;
}
else
{
bit_chk_test &= bit_chk;
}
}
// Check only the bit we are testing
bit_chk_mask = (bit_chk_test & (((t_btfld)1) << ((t_btfld)subdq)));
if (bit_chk_mask == 0)
{
break;
}
working_cnt++;
}
//USER Restore the settings
if (QDRII) {
scc_mgr_set_group_dqs_io_and_oct_out1_gradual (write_group, calibrated_delay);
} else {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, calibrated_delay);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dq_out_margins[curr_shadow_reg][dq].max_working_setting, working_cnt);
}
}
#endif
#if ENABLE_TCL_DEBUG
// NOTE: if ever executing a run_*_margining function outside of calibration context you must first issue IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 1);
void run_dm_margining (alt_u32 rank_bgn, alt_u32 write_group)
{
alt_u32 test_status;
alt_u32 test_num;
alt_u32 dm;
alt_u32 delay;
alt_u32 calibrated_delay;
alt_u32 working_cnt;
t_btfld bit_chk;
ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
select_curr_shadow_reg_using_rank(rank_bgn);
// sweep output delays
for (dm = 0; dm < RW_MGR_NUM_DM_PER_WRITE_GROUP; dm++)
{
calibrated_delay = debug_cal_report->cal_dm_settings[curr_shadow_reg][write_group][dm].dm_out_delay1;
working_cnt = 0;
// Find the left edge
for (delay = calibrated_delay; delay <= IO_IO_OUT1_DELAY_MAX; delay++)
{
WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
scc_mgr_load_dm (dm);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
test_status = 1;
for (test_num = 0; test_num < NUM_WRITE_TESTS; test_num++)
{
if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0))
{
test_status = 0;
break;
}
}
if (test_status == 0)
{
break;
}
working_cnt++;
}
// Restore the settings
WRITE_SCC_DM_IO_OUT1_DELAY(dm, calibrated_delay);
scc_mgr_load_dm (dm);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dm_margins[curr_shadow_reg][write_group][dm].min_working_setting, working_cnt);
// Find the right edge
calibrated_delay = debug_cal_report->cal_dqs_out_settings[curr_shadow_reg][write_group].dqs_out_delay1;
working_cnt = 0;
for (delay = calibrated_delay; delay <= IO_IO_OUT1_DELAY_MAX; delay++)
{
WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
scc_mgr_load_dqs_io();
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
if (QDRII)
{
rw_mgr_mem_dll_lock_wait();
}
test_status = 1;
for (test_num = 0; test_num < NUM_WRITE_TESTS; test_num++)
{
if (!rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0))
{
test_status = 0;
break;
}
}
if (test_status == 0)
{
break;
}
working_cnt++;
}
//USER Restore the settings
if (QDRII) {
scc_mgr_set_group_dqs_io_and_oct_out1_gradual (write_group, calibrated_delay);
} else {
scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, calibrated_delay);
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
// Store the setting
TCLRPT_SET(debug_margin_report->margin_dm_margins[curr_shadow_reg][write_group][dm].max_working_setting, working_cnt);
}
}
#endif
//USER precharge all banks and activate row 0 in bank "000..." and bank "111..."
#if DDRX
void mem_precharge_and_activate (void)
{
alt_u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0F);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0F);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
//USER activate rows
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ACTIVATE_0_AND_1);
}
}
#endif
#if QDRII || RLDRAMX
void mem_precharge_and_activate (void) {}
#endif
//USER perform all refreshes necessary over all ranks
#if (ENABLE_NON_DESTRUCTIVE_CALIB || ENABLE_NON_DES_CAL)
// Only have DDR3 version for now
#if DDR3
alt_u32 mem_refresh_all_ranks (alt_u32 no_validate)
{
const alt_u32 T_REFI_NS = 3900; // JEDEC spec refresh interval in ns (industrial temp)
// const alt_u32 T_RFC_NS = 350; // Worst case REFRESH-REFRESH or REFRESH-ACTIVATE wait time in ns
// Alternatively, we could extract T_RFC from uniphy_gen.tcl
const alt_u32 T_RFC_AFI = 350 * AFI_CLK_FREQ / 1000; // T_RFC expressed in mem clk cycles (will be less than 256)
#if (ENABLE_NON_DESTRUCTIVE_CALIB)
const alt_u32 NUM_REFRESH_POSTING = 8192; // Number of consecutive refresh commands supported by Micron DDR3 devices
#else
const alt_u32 NUM_REFRESH_POSTING = 8;
#endif
alt_u32 i;
alt_u32 elapsed_time; // In AVL clock cycles
#if (ENABLE_NON_DESTRUCTIVE_CALIB)
//USER Reset the refresh interval timer
elapsed_time = IORD_32DIRECT (BASE_TIMER, 0);
IOWR_32DIRECT (BASE_TIMER, 0, 0x00);
//USER Validate that maximum refresh interval is not exceeded
if ( !no_validate ) {
if (!(~elapsed_time) || elapsed_time > (NUM_REFRESH_POSTING * T_REFI_NS * AVL_CLK_FREQ / 1000) ) {
// Non-destructive calibration failure
return 0;
}
}
#endif
//USER set CS and ODT mask
if ( RDIMM || LRDIMM ) {
if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
else {
// Only single-rank DIMM supported for non-destructive cal
return 0;
}
}
else { // UDIMM
// Issue refreshes to all ranks simultaneously
IOWR_32DIRECT (RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
}
//USER Precharge all banks
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
// Wait for tRP = 15ns before issuing REFRESH commands
// No need to insert explicit delay; simulation shows more than 1000 ns between PRECHARGE and first REFRESH
//USER Issue refreshes
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_REFRESH_ALL);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_REFRESH_DELAY);
for (i = 0; i < NUM_REFRESH_POSTING; i += 256) {
// Issue 256 REFRESH commands, waiting t_RFC between consecutive refreshes
#if (ENABLE_NON_DESTRUCTIVE_CALIB)
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0xFF);
#else
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x07);
#endif
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, T_RFC_AFI);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH_ALL);
}
//USER Re-activate all banks
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x00); // No need to wait between commands to activate different banks (since ACTIVATE is preceded by tRFC wait)
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0F); // Wait for ACTIVATE to complete
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ACTIVATE_0_AND_1);
return 1;
}
#else
alt_u32 mem_refresh_all_ranks (alt_u32 no_validate)
{
return 1;
}
#endif
#endif
//USER Configure various memory related parameters.
#if DDRX
void mem_config (void)
{
alt_u32 rlat, wlat;
alt_u32 rw_wl_nop_cycles;
alt_u32 max_latency;
#if CALIBRATE_BIT_SLIPS
alt_u32 i;
#endif
TRACE_FUNC();
//USER read in write and read latency
wlat = IORD_32DIRECT (MEM_T_WL_ADD, 0);
#if HARD_PHY
wlat += IORD_32DIRECT (DATA_MGR_MEM_T_ADD, 0); /* WL for hard phy does not include additive latency */
#if DDR3 || DDR2
// YYONG: add addtional write latency to offset the address/command extra clock cycle
// YYONG: We change the AC mux setting causing AC to be delayed by one mem clock cycle
// YYONG: only do this for DDR3
wlat = wlat + 1;
#endif
#endif
rlat = IORD_32DIRECT (MEM_T_RL_ADD, 0);
if (QUARTER_RATE_MODE) {
//USER In Quarter-Rate the WL-to-nop-cycles works like this
//USER 0,1 -> 0
//USER 2,3,4,5 -> 1
//USER 6,7,8,9 -> 2
//USER etc...
rw_wl_nop_cycles = (wlat + 6) / 4 - 1;
}
else if(HALF_RATE_MODE) {
//USER In Half-Rate the WL-to-nop-cycles works like this
//USER 0,1 -> -1
//USER 2,3 -> 0
//USER 4,5 -> 1
//USER etc...
if(wlat % 2)
{
rw_wl_nop_cycles = ((wlat - 1) / 2) - 1;
}
else
{
rw_wl_nop_cycles = (wlat / 2) - 1;
}
}
else {
rw_wl_nop_cycles = wlat - 2;
#if LPDDR2
rw_wl_nop_cycles = rw_wl_nop_cycles + 1;
#endif
}
#if MULTIPLE_AFI_WLAT
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
gbl->rw_wl_nop_cycles_per_group[i] = rw_wl_nop_cycles;
}
#endif
gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
#if ARRIAV || CYCLONEV
//USER For AV/CV, lfifo is hardened and always runs at full rate
//USER so max latency in AFI clocks, used here, is correspondingly smaller
if (QUARTER_RATE_MODE) {
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/4 - 1;
} else if (HALF_RATE_MODE) {
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/2 - 1;
} else {
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
}
#else
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
#endif
//USER configure for a burst length of 8
if (QUARTER_RATE_MODE) {
//USER write latency
wlat = (wlat + 5) / 4 + 1;
//USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 4 + 8;
} else if (HALF_RATE_MODE) {
//USER write latency
wlat = (wlat - 1) / 2 + 1;
//USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 2 + 8;
} else {
//USER write latency
#if HARD_PHY
// Adjust Write Latency for Hard PHY
wlat = wlat + 1;
#if LPDDR2
// Add another one in hard for LPDDR2 since this value is raw from controller
// assume tdqss is one
wlat = wlat + 1;
#endif
#endif
//USER set a pretty high read latency initially
gbl->curr_read_lat = rlat + 16;
}
if (gbl->curr_read_lat > max_latency) {
gbl->curr_read_lat = max_latency;
}
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
//USER advertise write latency
gbl->curr_write_lat = wlat;
#if MULTIPLE_AFI_WLAT
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
#if HARD_PHY
IOWR_32DIRECT (PHY_MGR_AFI_WLAT, i*4, wlat - 2);
#else
IOWR_32DIRECT (PHY_MGR_AFI_WLAT, i*4, wlat - 1);
#endif
}
#else
#if HARD_PHY
IOWR_32DIRECT (PHY_MGR_AFI_WLAT, 0, wlat - 2);
#else
IOWR_32DIRECT (PHY_MGR_AFI_WLAT, 0, wlat - 1);
#endif
#endif
//USER initialize bit slips
#if CALIBRATE_BIT_SLIPS
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
IOWR_32DIRECT (PHY_MGR_FR_SHIFT, i*4, 0);
}
#endif
mem_precharge_and_activate ();
}
#endif
#if QDRII || RLDRAMX
void mem_config (void)
{
alt_u32 wlat, nop_cycles, max_latency;
TRACE_FUNC();
max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
if (QUARTER_RATE_MODE) {
// TODO_JCHOI: verify confirm
gbl->curr_read_lat = (IORD_32DIRECT (MEM_T_RL_ADD, 0) + 1) / 4 + 8;
} else if (HALF_RATE_MODE) {
gbl->curr_read_lat = (IORD_32DIRECT (MEM_T_RL_ADD, 0) + 1) / 2 + 8;
} else {
gbl->curr_read_lat = IORD_32DIRECT (MEM_T_RL_ADD, 0) + 16;
}
if (gbl->curr_read_lat > max_latency) {
gbl->curr_read_lat = max_latency;
}
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
if (RLDRAMX)
{
//USER read in write and read latency
wlat = IORD_32DIRECT (MEM_T_WL_ADD, 0);
if (QUARTER_RATE_MODE)
{
// TODO_JCHOI Verify
nop_cycles = ((wlat - 1) / 4) - 1;
}
else if (HALF_RATE_MODE)
{
#if HR_DDIO_OUT_HAS_THREE_REGS
nop_cycles = (wlat / 2) - 2;
#else
#if RLDRAM3
// RLDRAM3 uses all AFI phases to issue commands
nop_cycles = (wlat / 2) - 2;
#else
nop_cycles = ((wlat + 1) / 2) - 2;
#endif
#endif
}
else
{
nop_cycles = wlat - 1;
}
gbl->rw_wl_nop_cycles = nop_cycles;
}
}
#endif
//USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
void mem_skip_calibrate (void)
{
alt_u32 vfifo_offset;
alt_u32 i, j, r;
#if HCX_COMPAT_MODE && DDR3
alt_u32 v;
#if (RDIMM || LRDIMM)
alt_u32 increment = 2;
#else
alt_u32 wlat = IORD_32DIRECT (PHY_MGR_MEM_T_WL, 0);
alt_u32 rlat = IORD_32DIRECT (PHY_MGR_MEM_T_RL, 0);
alt_u32 increment = rlat - wlat*2 + 1;
#endif
#endif
TRACE_FUNC();
// Need to update every shadow register set used by the interface
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
// Strictly speaking this should be called once per group to make
// sure each group's delay chains are refreshed from the SCC register file,
// but since we're resetting all delay chains anyway, we can save some
// runtime by calling select_shadow_regs_for_update just once to switch rank.
select_shadow_regs_for_update(r, 0, 1);
//USER Set output phase alignment settings appropriate for skip calibration
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
scc_mgr_set_dqs_en_phase(i, 0);
#else
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1) - 1);
#else
scc_mgr_set_dqs_en_phase(i, (IO_DLL_CHAIN_LENGTH >> 1));
#endif
#endif
#if HCX_COMPAT_MODE && DDR3
v = 0;
for (j = 0; j < increment; j++) {
rw_mgr_incr_vfifo(i, &v);
}
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqdqs_output_phase(i, 6);
#else
scc_mgr_set_dqdqs_output_phase(i, 7);
#endif
#else
#if HCX_COMPAT_MODE
// in this mode, write_clk doesn't always lead mem_ck by 90 deg, and so
// the enhancement in case:33398 can't be applied.
scc_mgr_set_dqdqs_output_phase(i, (IO_DLL_CHAIN_LENGTH - IO_DLL_CHAIN_LENGTH / 3));
#else
// Case:33398
//
// Write data arrives to the I/O two cycles before write latency is reached (720 deg).
// -> due to bit-slip in a/c bus
// -> to allow board skew where dqs is longer than ck
// -> how often can this happen!?
// -> can claim back some ptaps for high freq support if we can relax this, but i digress...
//
// The write_clk leads mem_ck by 90 deg
// The minimum ptap of the OPA is 180 deg
// Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
// The write_clk is always delayed by 2 ptaps
//
// Hence, to make DQS aligned to CK, we need to delay DQS by:
// (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
//
// Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) gives us the number of ptaps, which simplies to:
//
// (1.25 * IO_DLL_CHAIN_LENGTH - 2)
scc_mgr_set_dqdqs_output_phase(i, (1.25 * IO_DLL_CHAIN_LENGTH - 2));
#endif
#endif
}
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, 0xff);
IOWR_32DIRECT (SCC_MGR_DQS_IO_ENA, 0, 0xff);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, i);
IOWR_32DIRECT (SCC_MGR_DQ_ENA, 0, 0xff);
IOWR_32DIRECT (SCC_MGR_DM_ENA, 0, 0xff);
}
#if USE_SHADOW_REGS
//USER in shadow-register mode, SCC_UPDATE is done on a per-group basis
//USER unless we explicitly ask for a multicast via the group counter
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, 0xFF);
#endif
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
}
#if ARRIAV || CYCLONEV
// Compensate for simulation model behaviour
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs (i);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
#endif
#if ARRIAV || CYCLONEV
//ArriaV has hard FIFOs that can only be initialized by incrementing in sequencer
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++) {
if(HARD_PHY) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff);
} else {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
}
}
#else
// Note, this is not currently supported; changing this might significantly
// increase the size of the ROM
#if SUPPORT_DYNAMIC_SKIP_CALIBRATE_ACTIONS
if ((DYNAMIC_CALIB_STEPS) & CALIB_IN_RTL_SIM) {
//USER VFIFO is reset to the correct settings in RTL simulation
} else {
vfifo_offset = IORD_32DIRECT (PHY_MGR_CALIB_VFIFO_OFFSET, 0);
if (QUARTER_RATE_MODE) {
while (vfifo_offset > 3) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_QR, 0, 0xff);
vfifo_offset -= 4;
}
if (vfifo_offset == 3) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, 0xff);
} else if (vfifo_offset == 2) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HR, 0, 0xff);
} else if (vfifo_offset == 1) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
}
} else {
while (vfifo_offset > 1) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_HR, 0, 0xff);
vfifo_offset -= 2;
}
if (vfifo_offset == 1) {
IOWR_32DIRECT (PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
}
}
}
#endif
#endif
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
#if ARRIAV || CYCLONEV
// For ACV with hard lfifo, we get the skip-cal setting from generation-time constant
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
#else
gbl->curr_read_lat = IORD_32DIRECT (PHY_MGR_CALIB_LFIFO_OFFSET, 0);
#endif
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
}
#if BFM_MODE
void print_group_settings(alt_u32 group, alt_u32 dq_begin)
{
int i;
fprintf(bfm_gbl.outfp, "Group %lu (offset %lu)\n", group, dq_begin);
fprintf(bfm_gbl.outfp, "Output:\n");
fprintf(bfm_gbl.outfp, "dqdqs_out_phase: %2u\n", READ_SCC_DQDQS_OUT_PHASE(group));
fprintf(bfm_gbl.outfp, "dqs_out1_delay: %2u\n", READ_SCC_DQS_IO_OUT1_DELAY());
fprintf(bfm_gbl.outfp, "dqs_out2_delay: %2u\n", READ_SCC_DQS_IO_OUT2_DELAY());
fprintf(bfm_gbl.outfp, "oct_out1_delay: %2u\n", READ_SCC_OCT_OUT1_DELAY(group));
fprintf(bfm_gbl.outfp, "oct_out2_delay: %2u\n", READ_SCC_OCT_OUT2_DELAY(group));
fprintf(bfm_gbl.outfp, "dm_out1: ");
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
fprintf(bfm_gbl.outfp, "%2u ", READ_SCC_DM_IO_OUT1_DELAY(i));
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, "dm_out2: ");
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
fprintf(bfm_gbl.outfp, "%2u ", READ_SCC_DM_IO_OUT2_DELAY(i));
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, "dq_out1: ");
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
fprintf(bfm_gbl.outfp, "%2u ", READ_SCC_DQ_OUT1_DELAY(i));
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, "dq_out2: ");
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
fprintf(bfm_gbl.outfp, "%2u ", READ_SCC_DQ_OUT2_DELAY(i));
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, "Input:\n");
fprintf(bfm_gbl.outfp, "dqs_en_phase: %2u\n", READ_SCC_DQS_EN_PHASE(group));
fprintf(bfm_gbl.outfp, "dqs_en_delay: %2u\n", READ_SCC_DQS_EN_DELAY(group));
fprintf(bfm_gbl.outfp, "dqs_in_delay: %2u\n", READ_SCC_DQS_IN_DELAY(group));
fprintf(bfm_gbl.outfp, "dq_in: ");
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
fprintf(bfm_gbl.outfp, "%2u ", READ_SCC_DQ_IN_DELAY(i));
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, "\n");
fflush(bfm_gbl.outfp);
}
#endif
#if RUNTIME_CAL_REPORT
void print_report(alt_u32 pass)
{
RPRINT("Calibration Summary");
char *stage_name, *substage_name;
if(pass) {
RPRINT("Calibration Passed");
RPRINT("FOM IN = %lu", gbl->fom_in);
RPRINT("FOM OUT = %lu", gbl->fom_out);
} else {
RPRINT("Calibration Failed");
switch (gbl->error_stage) {
case CAL_STAGE_NIL:
stage_name = "NIL";
substage_name = "NIL";
case CAL_STAGE_VFIFO:
stage_name = "VFIFO";
switch (gbl->error_substage) {
case CAL_SUBSTAGE_GUARANTEED_READ:
substage_name = "GUARANTEED READ";
break;
case CAL_SUBSTAGE_DQS_EN_PHASE:
substage_name = "DQS ENABLE PHASE";
break;
case CAL_SUBSTAGE_VFIFO_CENTER:
substage_name = "Read Per-Bit Deskew";
break;
default:
substage_name = "NIL";
}
break;
case CAL_STAGE_WLEVEL:
stage_name = "WRITE LEVELING";
switch (gbl->error_substage) {
case CAL_SUBSTAGE_WORKING_DELAY:
substage_name = "DQS Window Left Edge"; //need a more descriptive name
break;
case CAL_SUBSTAGE_LAST_WORKING_DELAY:
substage_name = "DQS Window Right Edge";
break;
case CAL_SUBSTAGE_WLEVEL_COPY:
substage_name = "WRITE LEVEL COPY";
break;
default:
substage_name = "NIL";
}
break;
case CAL_STAGE_LFIFO:
stage_name = "LFIFO";
substage_name = "READ LATENCY";
break;
case CAL_STAGE_WRITES:
stage_name = "WRITES";
substage_name = "Write Per-Bit Deskew";
break;
case CAL_STAGE_FULLTEST:
stage_name = "FULL TEST";
substage_name = "FULL TEST";
break;
case CAL_STAGE_REFRESH:
stage_name = "REFRESH";
substage_name = "REFRESH";
break;
case CAL_STAGE_CAL_SKIPPED:
stage_name = "SKIP CALIBRATION"; //hw: is this needed
substage_name = "SKIP CALIBRATION";
break;
case CAL_STAGE_CAL_ABORTED:
stage_name = "ABORTED CALIBRATION"; //hw: hum???
substage_name = "ABORTED CALIBRATION";
break;
case CAL_STAGE_VFIFO_AFTER_WRITES:
stage_name = "READ Fine-tuning";
switch (gbl->error_substage) {
case CAL_SUBSTAGE_GUARANTEED_READ:
substage_name = "GUARANTEED READ";
break;
case CAL_SUBSTAGE_DQS_EN_PHASE:
substage_name = "DQS ENABLE PHASE";
break;
case CAL_SUBSTAGE_VFIFO_CENTER:
substage_name = "VFIFO CENTER";
break;
default:
substage_name = "NIL";
}
break;
default:
stage_name = "NIL";
substage_name = "NIL";
}
RPRINT("Error Stage : %lu - %s", gbl->error_stage, stage_name);
RPRINT("Error Substage: %lu - %s", gbl->error_substage, substage_name);
RPRINT("Error Group : %lu", gbl->error_group);
}
}
#endif //RUNTIME_CAL_REPORT
//USER Memory calibration entry point
alt_u32 mem_calibrate (void)
{
alt_u32 i;
alt_u32 rank_bgn, sr;
alt_u32 write_group, write_test_bgn;
alt_u32 read_group, read_test_bgn;
alt_u32 run_groups, current_run;
alt_u32 failing_groups = 0;
alt_u32 group_failed = 0;
alt_u32 sr_failed = 0;
TRACE_FUNC();
// Initialize the data settings
DPRINT(1, "Preparing to init data");
#if ENABLE_TCL_DEBUG
tclrpt_initialize_data();
#endif
DPRINT(1, "Init complete");
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
TCLRPT_SET(debug_summary_report->cal_read_latency, 0);
TCLRPT_SET(debug_summary_report->cal_write_latency, 0);
mem_config ();
if(ARRIAV || CYCLONEV) {
alt_u32 bypass_mode = (HARD_PHY) ? 0x1 : 0x0;
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, i);
scc_set_bypass_mode (i, bypass_mode);
}
}
if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
//USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
mem_skip_calibrate ();
} else {
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
//USER Zero all delay chain/phase settings for all groups and all shadow register sets
scc_mgr_zero_all ();
#if ENABLE_SUPER_QUICK_CALIBRATION
for (write_group = 0, write_test_bgn = 0; write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS)
{
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, write_group);
scc_mgr_zero_group (write_group, write_test_bgn, 0);
}
#endif
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0; write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS)
{
// Initialized the group failure
group_failed = 0;
// Mark the group as being attempted for calibration
#if ENABLE_TCL_DEBUG
tclrpt_set_group_as_calibration_attempted(write_group);
#endif
#if RLDRAMX || QDRII
//Note:
// It seems that with rldram and qdr vfifo starts at max (not sure for ddr)
// also not sure if max is really vfifo_size-1 or vfifo_size
BFM_GBL_SET(vfifo_idx,VFIFO_SIZE-1);
#else
BFM_GBL_SET(vfifo_idx,0);
#endif
current_run = run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0)
{
continue;
}
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, write_group);
#if !ENABLE_SUPER_QUICK_CALIBRATION
scc_mgr_zero_group (write_group, write_test_bgn, 0);
#endif
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
//USER Calibrate the VFIFO
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_VFIFO)) {
if (!rw_mgr_mem_calibrate_vfifo (read_group, read_test_bgn)) {
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
//USER level writes (or align DK with CK for RLDRAMX)
if (group_failed == 0)
{
if ((DDRX || RLDRAMII) && !(ARRIAV || CYCLONEV))
{
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WLEVEL)) {
if (!rw_mgr_mem_calibrate_wlevel (write_group, write_test_bgn)) {
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
//USER Calibrate the output side
if (group_failed == 0)
{
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
sr_failed = 0;
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
if ((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) {
//USER not needed in quick mode!
} else {
//USER Determine if this set of ranks should be skipped entirely
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, write_group, 1);
if (!rw_mgr_mem_calibrate_writes (rank_bgn, write_group, write_test_bgn)) {
sr_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
if(sr_failed == 0) {
TCLRPT_SET(debug_cal_report->cal_status_per_group[sr][write_group].error_stage, CAL_STAGE_NIL);
} else {
group_failed = 1;
}
}
}
#if READ_AFTER_WRITE_CALIBRATION
if (group_failed == 0)
{
for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
if (!rw_mgr_mem_calibrate_vfifo_end (read_group, read_test_bgn)) {
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
#endif
if (group_failed == 0)
{
#if BFM_MODE
// TODO: should just update global BFM structure with all data
// and print all out at the end
print_group_settings(write_group, write_test_bgn);
#endif
#if STATIC_IN_RTL_SIM
#if ENABLE_TCL_DEBUG && BFM_MODE
tclrpt_populate_fake_margin_data();
#endif
#else
#if ENABLE_TCL_DEBUG
if (gbl->phy_debug_mode_flags & PHY_DEBUG_ENABLE_MARGIN_RPT)
{
// Run margining
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (! param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, write_group, 1);
run_dq_margining(rank_bgn, write_group);
#if DDRX
if (RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP > 0)
{
run_dm_margining(rank_bgn, write_group);
}
#endif
#if QDRII
run_dm_margining(rank_bgn, write_group);
#endif
#if RLDRAMX
if (is_write_group_enabled_for_dm(write_group))
{
run_dm_margining(rank_bgn, write_group);
}
#endif
}
}
}
#endif
#endif
}
if (group_failed != 0)
{
failing_groups++;
}
#if ENABLE_NON_DESTRUCTIVE_CALIB
if (gbl->phy_debug_mode_flags & PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION) {
// USER Refresh the memory
if (!mem_refresh_all_ranks(0)) {
set_failing_group_stage(write_group, CAL_STAGE_REFRESH, CAL_SUBSTAGE_REFRESH);
TCLRPT_SET(debug_cal_report->cal_status_per_group[curr_shadow_reg][write_group].error_stage, CAL_STAGE_REFRESH);
return 0;
}
}
#endif
#if ENABLE_NON_DESTRUCTIVE_CALIB
// USER Check if synchronous abort has been asserted
if (abort_cal) {
set_failing_group_stage(write_group, CAL_STAGE_CAL_ABORTED, CAL_SUBSTAGE_NIL);
return 0;
}
#endif
}
// USER If there are any failing groups then report the failure
if (failing_groups != 0)
{
return 0;
}
//USER Calibrate the LFIFO
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
//USER If we're skipping groups as part of debug, don't calibrate LFIFO
if (param->skip_groups == 0)
{
if (!rw_mgr_mem_calibrate_lfifo ()) {
return 0;
}
}
}
}
}
TCLRPT_SET(debug_summary_report->cal_write_latency, IORD_32DIRECT (MEM_T_WL_ADD, 0));
if (QUARTER_RATE == 1) {
// The read latency is in terms of AFI cycles so we multiply by 4 in quarter
// rate to get the memory cycles.
TCLRPT_SET(debug_summary_report->cal_read_latency, gbl->curr_read_lat * 4);
}
else if (HALF_RATE == 1) {
// The read latency is in terms of AFI cycles so we multiply by 2 in half
// rate to get the memory cycles.
TCLRPT_SET(debug_summary_report->cal_read_latency, gbl->curr_read_lat * 2);
}
else {
TCLRPT_SET(debug_summary_report->cal_read_latency, gbl->curr_read_lat);
}
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
return 1;
}
#if ENABLE_NON_DES_CAL
alt_u32 run_mem_calibrate(alt_u32 non_des_mode) {
#else
alt_u32 run_mem_calibrate(void) {
#endif
alt_u32 pass;
alt_u32 debug_info;
// Initialize the debug status to show that calibration has started.
// This should occur before anything else
#if ENABLE_TCL_DEBUG
tclrpt_initialize_debug_status();
// Set that calibration has started
debug_data->status |= 1 << DEBUG_STATUS_CALIBRATION_STARTED;
#endif
// Reset pass/fail status shown on afi_cal_success/fail
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET);
TRACE_FUNC();
BFM_STAGE("calibrate");
#if USE_DQS_TRACKING
#if HHP_HPS
//stop tracking manger
alt_u32 ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG,0);
IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF);
#else
// we need to stall tracking
IOWR_32DIRECT (TRK_STALL, 0, TRK_STALL_REQ_VAL);
// busy wait for tracking manager to ack stall request
while (IORD_32DIRECT (TRK_STALL, 0) != TRK_STALL_ACKED_VAL) {
}
#endif
#endif
initialize();
#if ENABLE_NON_DESTRUCTIVE_CALIB
if (gbl->phy_debug_mode_flags & PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION) {
if (no_init) {
rw_mgr_mem_initialize_no_init();
// refresh is done as part of rw_mgr_mem_initialize_no_init()
} else {
rw_mgr_mem_initialize ();
mem_refresh_all_ranks(1);
}
} else {
rw_mgr_mem_initialize ();
}
#else
#if ENABLE_NON_DES_CAL
if (non_des_mode)
rw_mgr_mem_initialize_no_init();
else
rw_mgr_mem_initialize ();
#else
rw_mgr_mem_initialize ();
#endif
#endif
#if ENABLE_BRINGUP_DEBUGGING
do_bringup_test();
#endif
pass = mem_calibrate ();
#if ENABLE_NON_DESTRUCTIVE_CALIB
if( (gbl->phy_debug_mode_flags & PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION) ) {
if (!mem_refresh_all_ranks(0)) {
set_failing_group_stage(RW_MGR_MEM_IF_WRITE_DQS_WIDTH, CAL_STAGE_REFRESH, CAL_SUBSTAGE_REFRESH);
pass = 0;
}
} else {
mem_precharge_and_activate ();
}
#else
mem_precharge_and_activate ();
#endif
//pe_checkout_pattern();
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
if (pass) {
TCLRPT_SET(debug_summary_report->error_stage, CAL_STAGE_NIL);
BFM_STAGE("handoff");
#ifdef TEST_SIZE
if (!check_test_mem(0)) {
gbl->error_stage = 0x92;
gbl->error_group = 0x92;
}
#endif
}
#if TRACKING_ERROR_TEST
if (IORD_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0) == 0xFE) {
poll_for_sample_check();
}
#endif
//USER Handoff
#if ENABLE_NON_DES_CAL
if (non_des_mode)
{
alt_u32 took_too_long = 0;
IOWR_32DIRECT (RW_MGR_ENABLE_REFRESH, 0, 0); // Disable refresh engine
took_too_long = IORD_32DIRECT (RW_MGR_ENABLE_REFRESH, 0);
if (took_too_long != 0)
{
pass = 0; // force a failure
set_failing_group_stage(RW_MGR_MEM_IF_WRITE_DQS_WIDTH, CAL_STAGE_REFRESH, CAL_SUBSTAGE_REFRESH);
}
}
#endif
//USER Don't return control of the PHY back to AFI when in debug mode
if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
rw_mgr_mem_handoff ();
#if HARD_PHY
// In Hard PHY this is a 2-bit control:
// 0: AFI Mux Select
// 1: DDIO Mux Select
IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 0x2);
#else
IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 0);
#endif
}
#if USE_DQS_TRACKING
#if HHP_HPS
IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg);
#else
// clear tracking stall flags
IOWR_32DIRECT (TRK_STALL, 0, 0);
#endif
#endif
#if FAKE_CAL_FAIL
if (0) {
#else
if (pass) {
#endif
IPRINT("CALIBRATION PASSED");
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff) {
gbl->fom_in = 0xff;
}
if (gbl->fom_out > 0xff) {
gbl->fom_out = 0xff;
}
#if BFM_MODE
// duplicated because we want it after updating gbl, but before phy
// is informed that calibration has completed
print_gbl();
fini_outfile();
#endif
// Update the FOM in the register file
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
IOWR_32DIRECT (REG_FILE_FOM, 0, debug_info);
IOWR_32DIRECT (PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
} else {
IPRINT("CALIBRATION FAILED");
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
#if BFM_MODE
// duplicated because we want it after updating gbl, but before phy
// is informed that calibration has completed
print_gbl();
fini_outfile();
#endif
IOWR_32DIRECT (REG_FILE_FAILING_STAGE, 0, debug_info);
IOWR_32DIRECT (PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
// Update the failing group/stage in the register file
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
IOWR_32DIRECT (REG_FILE_FAILING_STAGE, 0, debug_info);
}
#if RUNTIME_CAL_REPORT
print_report(pass);
#endif
// Mark the reports as being ready to read
TCLRPT_SET(debug_summary_report->report_flags, debug_summary_report->report_flags |= DEBUG_REPORT_STATUS_REPORT_READY);
TCLRPT_SET(debug_cal_report->report_flags, debug_cal_report->report_flags |= DEBUG_REPORT_STATUS_REPORT_READY);
TCLRPT_SET(debug_margin_report->report_flags, debug_margin_report->report_flags |= DEBUG_REPORT_STATUS_REPORT_READY);
// Set the debug status to show that calibration has ended.
// This should occur after everything else
#if ENABLE_TCL_DEBUG
debug_data->status |= 1 << DEBUG_STATUS_CALIBRATION_ENDED;
#endif
return pass;
}
#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
void hc_initialize_rom_data(void)
{
alt_u32 i;
for(i = 0; i < inst_rom_init_size; i++)
{
alt_u32 data = inst_rom_init[i];
IOWR_32DIRECT (RW_MGR_INST_ROM_WRITE, (i << 2), data);
}
for(i = 0; i < ac_rom_init_size; i++)
{
alt_u32 data = ac_rom_init[i];
IOWR_32DIRECT (RW_MGR_AC_ROM_WRITE, (i << 2), data);
}
}
#endif
#if BFM_MODE
void init_outfile(void)
{
const char *filename = getenv("SEQ_OUT_FILE");
if (filename == NULL) {
filename = "sequencer.out";
}
if ((bfm_gbl.outfp = fopen(filename, "w")) == NULL) {
printf("ERROR: Failed to open %s for writing; using stdout\n", filename);
bfm_gbl.outfp = stdout;
}
fprintf(bfm_gbl.outfp, "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu dqs=%lu,%lu dq=%lu dm=%lu "
"ptap_delay=%lu dtap_delay=%lu dtap_dqsen_delay=%lu dll=%lu\n",
RDIMM ? "r" : (LRDIMM ? "l" : ""),
DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ? "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ? "QR" : "??RATE??")),
RW_MGR_MEM_NUMBER_OF_RANKS,
RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
RW_MGR_MEM_DQ_PER_READ_DQS,
RW_MGR_MEM_DQ_PER_WRITE_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS,
RW_MGR_MEM_IF_READ_DQS_WIDTH,
RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
RW_MGR_MEM_DATA_WIDTH,
RW_MGR_MEM_DATA_MASK_WIDTH,
IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DCHAIN_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
IO_DLL_CHAIN_LENGTH);
fprintf(bfm_gbl.outfp, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu io_in_d=%lu io_out1_d=%lu io_out2_d=%lu "
"dqs_in_reserve=%lu dqs_out_reserve=%lu\n",
IO_DQS_EN_PHASE_MAX,
IO_DQDQS_OUT_PHASE_MAX,
IO_DQS_EN_DELAY_MAX,
IO_DQS_IN_DELAY_MAX,
IO_IO_IN_DELAY_MAX,
IO_IO_OUT1_DELAY_MAX,
IO_IO_OUT2_DELAY_MAX,
IO_DQS_IN_RESERVE,
IO_DQS_OUT_RESERVE);
fprintf(bfm_gbl.outfp, "\n");
// repeat these in a format that can be easily parsed
fprintf(bfm_gbl.outfp, "ptap_delay: %lu\n", IO_DELAY_PER_OPA_TAP);
fprintf(bfm_gbl.outfp, "dtap_delay: %lu\n", IO_DELAY_PER_DCHAIN_TAP);
fprintf(bfm_gbl.outfp, "ptap_per_cycle: %lu\n", IO_DLL_CHAIN_LENGTH);
fprintf(bfm_gbl.outfp, "ptap_max: %lu\n", IO_DQDQS_OUT_PHASE_MAX);
fprintf(bfm_gbl.outfp, "dtap_max: %lu\n", IO_IO_OUT1_DELAY_MAX);
fprintf(bfm_gbl.outfp, "vfifo_size: %lu\n", VFIFO_SIZE);
}
void fini_outfile(void)
{
if (bfm_gbl.outfp != stdout && bfm_gbl.outfp != NULL) {
// just flush, in case we calibrate again
fflush(bfm_gbl.outfp);
}
}
void print_u32_array(const char *label, alt_u32 *val, alt_u32 size)
{
int i;
fprintf(bfm_gbl.outfp, "%s", label);
for (i = 0; i < size; i++) {
fprintf(bfm_gbl.outfp, "%lu ", val[i]);
}
fprintf(bfm_gbl.outfp, "\n");
}
void print_s32_array(const char *label, alt_32 *val, alt_u32 size)
{
int i;
fprintf(bfm_gbl.outfp, "%s", label);
for (i = 0; i < size; i++) {
fprintf(bfm_gbl.outfp, "%ld ", val[i]);
}
fprintf(bfm_gbl.outfp, "\n");
}
void print_dqs_array(const char *label, alt_u32 *dqs)
{
print_u32_array(label, dqs, MAX_DQS);
}
void print_read_dq_array(const char *label, alt_32 *dq)
{
print_s32_array(label, dq, RW_MGR_MEM_IF_READ_DQS_WIDTH*RW_MGR_MEM_DQ_PER_READ_DQS);
}
void print_write_dq_array(const char *label, alt_32 *dq)
{
print_s32_array(label, dq, RW_MGR_MEM_IF_WRITE_DQS_WIDTH*RW_MGR_MEM_DQ_PER_WRITE_DQS);
}
void print_dm_array(const char *label, alt_32 *dq)
{
print_s32_array(label, dq, RW_MGR_MEM_IF_WRITE_DQS_WIDTH*RW_MGR_NUM_DM_PER_WRITE_GROUP);
}
void print_dqs_pos_array(const char *fmt, dqs_pos_t *dqs, int has_v, int has_ps)
{
int i;
if (has_v) {
fprintf(bfm_gbl.outfp, fmt, "_v: ");
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
fprintf(bfm_gbl.outfp, "%lu ", dqs[i].v);
}
fprintf(bfm_gbl.outfp, "\n");
}
fprintf(bfm_gbl.outfp, fmt, "_p: ");
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
fprintf(bfm_gbl.outfp, "%lu ", dqs[i].p);
}
fprintf(bfm_gbl.outfp, "\n");
fprintf(bfm_gbl.outfp, fmt, "_d: ");
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
fprintf(bfm_gbl.outfp, "%lu ", dqs[i].d);
}
fprintf(bfm_gbl.outfp, "\n");
if (has_ps) {
fprintf(bfm_gbl.outfp, fmt, "_ps: ");
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
fprintf(bfm_gbl.outfp, "%lu ", dqs[i].ps);
}
fprintf(bfm_gbl.outfp, "\n");
}
}
void print_gbl(void)
{
int i;
fprintf(bfm_gbl.outfp, "Globals\n");
fprintf(bfm_gbl.outfp, "bfm_stage: %s\n", BFM_GBL_GET(stage));
// TODO: may want to do this per group, like other values
print_dqs_pos_array( "dqse_left%s ", BFM_GBL_GET(dqs_enable_left_edge), 1, 1);
print_dqs_pos_array( "dqse_right%s ", BFM_GBL_GET(dqs_enable_right_edge), 1, 1);
print_dqs_pos_array( "dqse_mid%s ", BFM_GBL_GET(dqs_enable_mid), 1, 1);
print_dqs_pos_array( "gwrite_pos%s ", BFM_GBL_GET(gwrite_pos), 0, 0);
print_dqs_pos_array( "dqswl_left%s ", BFM_GBL_GET(dqs_wlevel_left_edge), 0, 1);
print_dqs_pos_array( "dqswl_right%s", BFM_GBL_GET(dqs_wlevel_right_edge), 0, 1);
print_dqs_pos_array( "dqswl_mid%s ", BFM_GBL_GET(dqs_wlevel_mid), 0, 1);
print_read_dq_array( "dq_read_l: ", BFM_GBL_GET(dq_read_left_edge));
print_read_dq_array( "dq_read_r: ", BFM_GBL_GET(dq_read_right_edge));
print_write_dq_array( "dq_write_l: ", BFM_GBL_GET(dq_write_left_edge));
print_write_dq_array( "dq_write_r: ", BFM_GBL_GET(dq_write_right_edge));
print_dm_array( "dm_l: ", BFM_GBL_GET(dm_left_edge));
print_dm_array( "dm_r: ", BFM_GBL_GET(dm_right_edge));
fprintf(bfm_gbl.outfp, "curr_read_lat: %lu\n", gbl->curr_read_lat);
fprintf(bfm_gbl.outfp, "error_stage: %lu\n", gbl->error_stage);
fprintf(bfm_gbl.outfp, "error_group: %lu\n", gbl->error_group);
fprintf(bfm_gbl.outfp, "fom_in: %lu\n", gbl->fom_in);
fprintf(bfm_gbl.outfp, "fom_out: %lu\n", gbl->fom_out);
fflush(bfm_gbl.outfp);
};
void bfm_set_globals_from_config()
{
const char *filename = "board_delay_config.txt";
const char *seq_c_prefix = "seq_c_";
FILE *fp;
char line[1024];
char name[64];
int value;
if ((fp = fopen(filename, "r")) == NULL) {
DPRINT(0, "Failed to open %s for reading; skipping config\n", filename);
return;
}
while (fgets(line, sizeof(line), fp) != NULL) {
if (sscanf(line, "%s %ld", name, &value) != 2) {
continue;
}
// for some unknown reason, sscanf of 'name' doesn't seem to work when linked into modelsim,
// so we take a different approach for the name part, by just looking at the original line
if (strncmp(line, seq_c_prefix, strlen(seq_c_prefix)) != 0) {
// not a line targetted for us
continue;
}
if (strncmp(line, "seq_c_skip_guaranteed_write", strlen("seq_c_skip_guaranteed_write")) == 0) {
BFM_GBL_SET(bfm_skip_guaranteed_write,value);
DPRINT(0, "bfm_skip_guaranteed_write => %ld", value);
} else if (strncmp(line, "seq_c_trk_sample_count", strlen("seq_c_trk_sample_count")) == 0) {
BFM_GBL_SET(trk_sample_count,value);
DPRINT(0, "trk_sample_count => %ld", value);
} else if (strncmp(line, "seq_c_trk_long_idle_updates", strlen("seq_c_trk_long_idle_updates")) == 0) {
BFM_GBL_SET(trk_long_idle_updates,value);
DPRINT(0, "trk_long_idle_updates => %ld", value);
} else if (strncmp(line, "seq_c_lfifo_margin", strlen("seq_c_lfifo_margin")) == 0) {
BFM_GBL_SET(lfifo_margin,value/AFI_RATE_RATIO);
DPRINT(0, "lfifo_margin => %ld", value);
} else {
DPRINT(0, "Unknown Sequencer setting in line: %s\n", line);
}
}
fclose(fp);
}
#endif
void initialize_reg_file(void)
{
// Initialize the register file with the correct data
IOWR_32DIRECT (REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE);
IOWR_32DIRECT (REG_FILE_DEBUG_DATA_ADDR, 0, 0);
IOWR_32DIRECT (REG_FILE_CUR_STAGE, 0, 0);
IOWR_32DIRECT (REG_FILE_FOM, 0, 0);
IOWR_32DIRECT (REG_FILE_FAILING_STAGE, 0, 0);
IOWR_32DIRECT (REG_FILE_DEBUG1, 0, 0);
IOWR_32DIRECT (REG_FILE_DEBUG2, 0, 0);
}
#if HPS_HW
void initialize_hps_phy(void)
{
// These may need to be included also:
// wrap_back_en (false)
// atpg_en (false)
// pipelineglobalenable (true)
alt_u32 reg;
// Tracking also gets configured here because it's in the same register
alt_u32 trk_sample_count = 7500;
alt_u32 trk_long_idle_sample_count = (10 << 16) | 100; // Format is number of outer loops in the 16 MSB, sample count in 16 LSB.
reg = 0;
#if DDR3 || DDR2
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
#else
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(1);
#endif
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
#if LPDDR2
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(0);
#else
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
#endif
// Fix for long latency VFIFO
// This field selects the intrinsic latency to RDATA_EN/FULL path. 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(trk_sample_count);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(trk_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(trk_long_idle_sample_count);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(trk_long_idle_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg);
}
#endif
#if USE_DQS_TRACKING
#if HHP_HPS
void initialize_tracking(void)
{
alt_u32 concatenated_longidle = 0x0;
alt_u32 concatenated_delays = 0x0;
alt_u32 concatenated_rw_addr = 0x0;
alt_u32 concatenated_refresh = 0x0;
alt_u32 dtaps_per_ptap;
alt_u32 tmp_delay;
// compute usable version of value in case we skip full computation later
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
}
dtaps_per_ptap--;
#if BFM_MODE
concatenated_longidle = concatenated_longidle ^ (bfm_gbl.trk_long_idle_updates > 0 ? bfm_gbl.trk_long_idle_updates : 10); //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ (bfm_gbl.trk_sample_count > 0 ? bfm_gbl.trk_sample_count : 100); //longidle sample count
#else
concatenated_longidle = concatenated_longidle ^ 10; //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ 100; //longidle sample count
#endif
concatenated_delays = concatenated_delays ^ 243; // trfc, worst case of 933Mhz 4Gb
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 14; // trcd, worst case
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 10; // vfifo wait
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 4; // mux delay
#if DDR3 || LPDDR2
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
#endif
#if DDR3 || LPDDR2
concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
#else
concatenated_refresh = concatenated_refresh ^ 0;
#endif
concatenated_refresh = concatenated_refresh << 24;
concatenated_refresh = concatenated_refresh ^ 1000; // trefi
// Initialize the register file with the correct data
IOWR_32DIRECT (REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
#if BFM_MODE
IOWR_32DIRECT (REG_FILE_TRK_SAMPLE_COUNT, 0, bfm_gbl.trk_sample_count > 0 ? bfm_gbl.trk_sample_count : 7500);
#else
IOWR_32DIRECT (REG_FILE_TRK_SAMPLE_COUNT, 0, 7500);
#endif
IOWR_32DIRECT (REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle);
IOWR_32DIRECT (REG_FILE_DELAYS, 0, concatenated_delays);
IOWR_32DIRECT (REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
IOWR_32DIRECT (REG_FILE_TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
IOWR_32DIRECT (REG_FILE_TRK_RFSH, 0, concatenated_refresh);
}
#else
void initialize_tracking(void)
{
alt_u32 concatenated_longidle = 0x0;
alt_u32 concatenated_delays = 0x0;
alt_u32 concatenated_rw_addr = 0x0;
alt_u32 concatenated_refresh = 0x0;
alt_u32 dtaps_per_ptap;
alt_u32 tmp_delay;
// compute usable version of value in case we skip full computation later
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
}
dtaps_per_ptap--;
#if BFM_MODE
concatenated_longidle = concatenated_longidle ^ (bfm_gbl.trk_long_idle_updates > 0 ? bfm_gbl.trk_long_idle_updates : 10); //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ (bfm_gbl.trk_sample_count > 0 ? bfm_gbl.trk_sample_count : 100); //longidle sample count
#else
concatenated_longidle = concatenated_longidle ^ 10; //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ 100; //longidle sample count
#endif
#if FULL_RATE
concatenated_delays = concatenated_delays ^ 60; // trfc
#endif
#if HALF_RATE
concatenated_delays = concatenated_delays ^ 30; // trfc
#endif
#if QUARTER_RATE
concatenated_delays = concatenated_delays ^ 15; // trfc
#endif
concatenated_delays = concatenated_delays << 8;
#if FULL_RATE
concatenated_delays = concatenated_delays ^ 4; // trcd
#endif
#if HALF_RATE
concatenated_delays = concatenated_delays ^ 2; // trcd
#endif
#if QUARTER_RATE
concatenated_delays = concatenated_delays ^ 0; // trcd
#endif
concatenated_delays = concatenated_delays << 8;
#if FULL_RATE
concatenated_delays = concatenated_delays ^ 5; // vfifo wait
#endif
#if HALF_RATE
concatenated_delays = concatenated_delays ^ 3; // vfifo wait
#endif
#if QUARTER_RATE
concatenated_delays = concatenated_delays ^ 1; // vfifo wait
#endif
concatenated_delays = concatenated_delays << 8;
#if FULL_RATE
concatenated_delays = concatenated_delays ^ 4; // mux delay
#endif
#if HALF_RATE
concatenated_delays = concatenated_delays ^ 2; // mux delay
#endif
#if QUARTER_RATE
concatenated_delays = concatenated_delays ^ 0; // mux delay
#endif
#if DDR3 || LPDDR2
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
#endif
#if DDR3 || LPDDR2
concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
#else
concatenated_refresh = concatenated_refresh ^ 0;
#endif
concatenated_refresh = concatenated_refresh << 24;
concatenated_refresh = concatenated_refresh ^ 546; // trefi
IOWR_32DIRECT (TRK_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
#if BFM_MODE
IOWR_32DIRECT (TRK_SAMPLE_COUNT, 0, bfm_gbl.trk_sample_count > 0 ? bfm_gbl.trk_sample_count : 7500);
#else
IOWR_32DIRECT (TRK_SAMPLE_COUNT, 0, 7500);
#endif
IOWR_32DIRECT (TRK_LONGIDLE, 0, concatenated_longidle);
IOWR_32DIRECT (TRK_DELAYS, 0, concatenated_delays);
IOWR_32DIRECT (TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
IOWR_32DIRECT (TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
IOWR_32DIRECT (TRK_RFSH, 0, concatenated_refresh);
}
#endif /* HHP_HPS */
#endif /* USE_DQS_TRACKING */
#if HHP_HPS_SIMULATION
void initialize_hps_controller(void)
{
alt_u32 reg;
alt_u32 memtype;
alt_u32 ecc;
alt_u32 ctrl_width;
alt_u32 mem_bl;
if (DDR2) {
memtype = 1;
} else if (DDR3) {
memtype = 2;
} else if (LPDDR1) {
memtype = 3;
} else if (LPDDR2) {
memtype = 4;
} else {
// should never happen
memtype = 0;
}
if (RW_MGR_MEM_DATA_WIDTH == 24 || RW_MGR_MEM_DATA_WIDTH == 40) {
// we have ecc
ecc = 1;
} else {
ecc = 0;
}
reg = 0;
reg |= SDR_CTRLGRP_CTRLCFG_MEMTYPE_SET(memtype);
reg |= SDR_CTRLGRP_CTRLCFG_MEMBL_SET(MEM_BURST_LENGTH);
reg |= SDR_CTRLGRP_CTRLCFG_ADDRORDER_SET(ADDR_ORDER);
reg |= SDR_CTRLGRP_CTRLCFG_ECCEN_SET(ecc);
reg |= SDR_CTRLGRP_CTRLCFG_ECCCORREN_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_CFG_ENABLE_ECC_CODE_OVERWRITES_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_GENSBE_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_GENDBE_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_REORDEREN_SET(1);
reg |= SDR_CTRLGRP_CTRLCFG_STARVELIMIT_SET(0x8);
reg |= SDR_CTRLGRP_CTRLCFG_DQSTRKEN_SET(USE_DQS_TRACKING); // Do we want this?
#if DM_PINS_ENABLED
reg |= SDR_CTRLGRP_CTRLCFG_NODMPINS_SET(0);
#else
reg |= SDR_CTRLGRP_CTRLCFG_NODMPINS_SET(1);
#endif
reg |= SDR_CTRLGRP_CTRLCFG_BURSTINTREN_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_BURSTTERMEN_SET(0);
reg |= SDR_CTRLGRP_CTRLCFG_OUTPUTREG_SET(0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_CTRLCFG_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMTIMING1_TCWL_SET(MEM_WTCL_INT);
reg |= SDR_CTRLGRP_DRAMTIMING1_TAL_SET(MEM_ATCL_INT);
reg |= SDR_CTRLGRP_DRAMTIMING1_TCL_SET(MEM_TCL);
reg |= SDR_CTRLGRP_DRAMTIMING1_TRRD_SET(MEM_TRRD);
reg |= SDR_CTRLGRP_DRAMTIMING1_TFAW_SET(MEM_TFAW);
reg |= SDR_CTRLGRP_DRAMTIMING1_TRFC_SET(MEM_TRFC);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMTIMING1_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMTIMING2_TREFI_SET(MEM_TREFI);
reg |= SDR_CTRLGRP_DRAMTIMING2_TRCD_SET(MEM_TRCD);
reg |= SDR_CTRLGRP_DRAMTIMING2_TRP_SET(MEM_TRP);
reg |= SDR_CTRLGRP_DRAMTIMING2_TWTR_SET(MEM_TWTR);
reg |= SDR_CTRLGRP_DRAMTIMING2_TWR_SET(MEM_TWR);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMTIMING2_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMTIMING3_TRTP_SET(MEM_TRTP);
reg |= SDR_CTRLGRP_DRAMTIMING3_TRAS_SET(MEM_TRAS);
reg |= SDR_CTRLGRP_DRAMTIMING3_TRC_SET(MEM_TRC);
reg |= SDR_CTRLGRP_DRAMTIMING3_TMRD_SET(MEM_TMRD_CK);
reg |= SDR_CTRLGRP_DRAMTIMING3_TCCD_SET(CFG_TCCD);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMTIMING3_OFFSET, reg);
// These values don't really matter for the HPS simulation
reg = 0;
reg |= SDR_CTRLGRP_DRAMTIMING4_SELFRFSHEXIT_SET(512);
reg |= SDR_CTRLGRP_DRAMTIMING4_PWRDOWNEXIT_SET(10);
reg |= SDR_CTRLGRP_DRAMTIMING4_MINPWRSAVECYCLES_SET(0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMTIMING4_OFFSET, reg);
// These values don't really matter for the HPS simulation
reg = 0;
reg |= SDR_CTRLGRP_LOWPWRTIMING_AUTOPDCYCLES_SET(0);
reg |= SDR_CTRLGRP_LOWPWRTIMING_CLKDISABLECYCLES_SET(0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_LOWPWRTIMING_OFFSET, reg);
// These values don't really matter for the HPS simulation
reg = 0;
reg |= SDR_CTRLGRP_DRAMODT_CFG_WRITE_ODT_CHIP_SET(0);
reg |= SDR_CTRLGRP_DRAMODT_CFG_READ_ODT_CHIP_SET(0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMODT_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_ACT_TO_RDWR_SET(INTG_EXTRA_CTL_CLK_ACT_TO_RDWR);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_ACT_TO_PCH_SET(INTG_EXTRA_CTL_CLK_RD_TO_PCH);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_ACT_TO_ACT_SET(INTG_EXTRA_CTL_CLK_ACT_TO_ACT);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_RD_TO_RD_SET(INTG_EXTRA_CTL_CLK_RD_TO_RD);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_RD_TO_RD_DIFF_CHIP_SET(INTG_EXTRA_CTL_CLK_RD_TO_RD_DIFF_CHIP);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_RD_TO_WR_SET(INTG_EXTRA_CTL_CLK_RD_TO_WR);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_RD_TO_WR_BC_SET(INTG_EXTRA_CTL_CLK_RD_TO_WR_BC);
reg |= SDR_CTRLGRP_EXTRATIME1_CFG_EXTRA_CTL_CLK_RD_TO_WR_DIFF_CHIP_SET(INTG_EXTRA_CTL_CLK_RD_TO_WR_DIFF_CHIP);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_EXTRATIME1_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_RD_TO_PCH_SET(INTG_EXTRA_CTL_CLK_RD_TO_PCH);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_RD_AP_TO_VALID_SET(INTG_EXTRA_CTL_CLK_RD_AP_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_WR_TO_WR_SET(INTG_EXTRA_CTL_CLK_WR_TO_WR);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_WR_TO_WR_DIFF_CHIP_SET(INTG_EXTRA_CTL_CLK_WR_TO_WR_DIFF_CHIP);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_WR_TO_RD_SET(INTG_EXTRA_CTL_CLK_WR_TO_RD);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_WR_TO_RD_BC_SET(INTG_EXTRA_CTL_CLK_WR_TO_RD_BC);
reg |= SDR_CTRLGRP_EXTRATIME2_CFG_EXTRA_CTL_CLK_WR_TO_RD_DIFF_CHIP_SET(INTG_EXTRA_CTL_CLK_WR_TO_RD_DIFF_CHIP);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_EXTRATIME2_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_WR_TO_PCH_SET(INTG_EXTRA_CTL_CLK_WR_TO_PCH);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_WR_AP_TO_VALID_SET(INTG_EXTRA_CTL_CLK_WR_AP_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_PCH_TO_VALID_SET(INTG_EXTRA_CTL_CLK_PCH_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_PCH_ALL_TO_VALID_SET(INTG_EXTRA_CTL_CLK_PCH_ALL_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_ACT_TO_ACT_DIFF_BANK_SET(INTG_EXTRA_CTL_CLK_ACT_TO_ACT_DIFF_BANK);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_FOUR_ACT_TO_ACT_SET(INTG_EXTRA_CTL_CLK_FOUR_ACT_TO_ACT);
reg |= SDR_CTRLGRP_EXTRATIME3_CFG_EXTRA_CTL_CLK_ARF_TO_VALID_SET(INTG_EXTRA_CTL_CLK_ARF_TO_VALID);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_EXTRATIME3_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_EXTRATIME4_CFG_EXTRA_CTL_CLK_PDN_TO_VALID_SET(INTG_EXTRA_CTL_CLK_PDN_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME4_CFG_EXTRA_CTL_CLK_SRF_TO_VALID_SET(INTG_EXTRA_CTL_CLK_SRF_TO_VALID);
reg |= SDR_CTRLGRP_EXTRATIME4_CFG_EXTRA_CTL_CLK_SRF_TO_ZQ_CAL_SET(INTG_EXTRA_CTL_CLK_SRF_TO_ZQ_CAL);
reg |= SDR_CTRLGRP_EXTRATIME4_CFG_EXTRA_CTL_CLK_ARF_PERIOD_SET(INTG_EXTRA_CTL_CLK_ARF_PERIOD);
reg |= SDR_CTRLGRP_EXTRATIME4_CFG_EXTRA_CTL_CLK_PDN_PERIOD_SET(INTG_EXTRA_CTL_CLK_PDN_PERIOD);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_EXTRATIME4_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMADDRW_COLBITS_SET(MEM_IF_COL_ADDR_WIDTH);
reg |= SDR_CTRLGRP_DRAMADDRW_ROWBITS_SET(MEM_IF_ROW_ADDR_WIDTH);
reg |= SDR_CTRLGRP_DRAMADDRW_BANKBITS_SET(MEM_IF_BANKADDR_WIDTH);
reg |= SDR_CTRLGRP_DRAMADDRW_CSBITS_SET(MEM_IF_CS_WIDTH > 1 ? MEM_IF_CHIP_BITS : 0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMADDRW_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMIFWIDTH_IFWIDTH_SET(RW_MGR_MEM_DATA_WIDTH);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMIFWIDTH_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_DRAMDEVWIDTH_DEVWIDTH_SET(RW_MGR_MEM_DQ_PER_READ_DQS); // should always be 8
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_DRAMDEVWIDTH_OFFSET, reg);
switch (RW_MGR_MEM_DATA_WIDTH) {
case 8: ctrl_width = 0; break;
case 16: // FALLTHROUGH
case 24: ctrl_width = 1; break;
case 32: // FALLTHROUGH
case 40: ctrl_width = 2; break;
default: ctrl_width = 0; break; /* shouldn't happen */
}
reg = 0;
reg |= SDR_CTRLGRP_CTRLWIDTH_CTRLWIDTH_SET(ctrl_width);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_CTRLWIDTH_OFFSET, reg);
// hard-coded values taken from test bench
reg = 0;
// 30'b111111111111010001000010001000
reg |= SDR_CTRLGRP_MPPRIORITY_USERPRIORITY_SET(0x3FFD1088);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_MPPRIORITY_OFFSET, reg);
// hard-coded values taken from test bench
reg = 0;
// first 32 bits of 50'b01111011111000010000100001000010000100001000010000
reg |= SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_0_STATICWEIGHT_31_0_SET(0x21084210);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_0_OFFSET, reg);
// hard-coded values taken from test bench
reg = 0;
// first next 18 bits of 50'b01111011111000010000100001000010000100001000010000
reg |= SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_1_STATICWEIGHT_49_32_SET(0x1EF84);
// first 14 of 64'b0011111000000000000000000000000000000000001000000010000000100000
reg |= SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_1_SUMOFWEIGHTS_13_0_SET(0x2002);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_1_OFFSET, reg);
// hard-coded values taken from test bench
reg = 0;
// next 32 bits of 64'b0011111000000000000000000000000000000000001000000010000000100000
reg |= SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_2_SUMOFWEIGHTS_45_14_SET(0x80);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_2_OFFSET, reg);
// hard-coded values taken from test bench
reg = 0;
// next 18 bits of 64'b0011111000000000000000000000000000000000001000000010000000100000
reg |= SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_3_SUMOFWEIGHTS_63_46_SET(0xF800);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_MPWEIGHT_MPWEIGHT_3_OFFSET, reg);
switch (MEM_BURST_LENGTH) {
case 2: mem_bl = 0; break;
case 4: mem_bl = 1; break;
case 8: mem_bl = 2; break;
default: mem_bl = 2; break; // should never happen
}
reg = 0;
reg |= SDR_CTRLGRP_STATICCFG_MEMBL_SET(mem_bl);
reg |= SDR_CTRLGRP_STATICCFG_USEECCASDATA_SET(0); /* allow fpga to access ecc bits; not supported */
reg |= SDR_CTRLGRP_STATICCFG_APPLYCFG_SET(1); /* apply all of the configs here and above */
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_STATICCFG_OFFSET, reg);
reg = 0;
reg |= SDR_CTRLGRP_FPGAPORTRST_PORTRSTN_SET(~0);
IOWR_32DIRECT (BASE_MMR, SDR_CTRLGRP_FPGAPORTRST_OFFSET, reg);
}
#endif
void user_init_cal_req(void)
{
alt_u32 scc_afi_reg;
scc_afi_reg = IORD_32DIRECT (SCC_MGR_AFI_CAL_INIT, 0);
if (scc_afi_reg == 1 || scc_afi_reg == 16) {// 1 is initialization request
initialize();
rw_mgr_mem_initialize ();
rw_mgr_mem_handoff ();
IOWR_32DIRECT (PHY_MGR_MUX_SEL, 0, 0);
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
} else if (scc_afi_reg == 2 || scc_afi_reg == 32) {
#if ENABLE_NON_DES_CAL
run_mem_calibrate (0);
#else
run_mem_calibrate();
#endif
}
#if ENABLE_NON_DES_CAL
else if (scc_afi_reg == 4) {
//non destructive mem init
IOWR_32DIRECT (SCC_MGR_AFI_CAL_INIT, 0, scc_afi_reg & ~(1 << 2));
rw_mgr_mem_initialize_no_init();
} else if (scc_afi_reg == 8) {
//non destructive mem calibrate
IOWR_32DIRECT (SCC_MGR_AFI_CAL_INIT, 0, scc_afi_reg & ~(1 << 3));
run_mem_calibrate (1);
IOWR_32DIRECT (RW_MGR_ENABLE_REFRESH, 0, 0); // Disable refresh engine
}
#endif
}
#if TRACKING_WATCH_TEST || TRACKING_ERROR_TEST
void decrement_dqs_en_phase (alt_u32 group) {
alt_u32 phase = 0;
alt_u32 v;
phase = READ_SCC_DQS_EN_PHASE(group);
if (phase == 0) {
rw_mgr_decr_vfifo(group, &v);
scc_mgr_set_dqs_en_phase(group, IO_DQS_EN_PHASE_MAX);
scc_mgr_set_dqs_en_delay(group, IO_DQS_EN_DELAY_MAX);
return;
}
scc_mgr_set_dqs_en_phase(group, phase - 1);
scc_mgr_set_dqs_en_delay(group, IO_DQS_EN_DELAY_MAX);
}
void read_samples (void)
{
alt_u32 group = 0;
alt_32 sample_count = 0;
alt_u32 delay = 0;
alt_u32 phase = 0;
alt_u32 dtaps_per_ptap = 0;
dtaps_per_ptap = IORD_32DIRECT(0xD0000, 0);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].dtaps_per_ptap, dtaps_per_ptap);
#if TRACKING_WATCH_TEST
for (;;) {
// Stall tracking to ensure accurate reading
IOWR_32DIRECT (TRK_STALL, 0, TRK_STALL_REQ_VAL);
// Wait for tracking manager to ack stall request
while (IORD_32DIRECT (TRK_STALL, 0) != TRK_STALL_ACKED_VAL) {
}
for (group = 0; group < RW_MGR_MEM_IF_READ_DQS_WIDTH; group++) {
// Read sample counter
sample_count = IORD_32DIRECT(0x58F00, group << 2);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].sample_count, sample_count);
delay = READ_SCC_DQS_EN_DELAY(group);
phase = READ_SCC_DQS_EN_PHASE(group);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].dqs_en_phase, (delay | (phase << 16)));
}
// Release stall
IOWR_32DIRECT(TRK_STALL, 0, 0);
}
#endif
#if TRACKING_ERROR_TEST
for (group = 0; group < RW_MGR_MEM_IF_READ_DQS_WIDTH; group++) {
// Read sample counter
sample_count = IORD_32DIRECT(0x58F00, group << 2);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].sample_count, sample_count);
delay = READ_SCC_DQS_EN_DELAY(group);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].dqs_en_delay, delay);
phase = READ_SCC_DQS_EN_PHASE(group);
TCLRPT_SET(debug_cal_report->cal_dqs_in_settings[curr_shadow_reg][group].dqs_en_phase, phase);
}
#endif
}
void tracking_sample_check (void)
{
alt_u32 group = 0;
alt_u32 t11_d = 0;
alt_u32 read_val = 0;
alt_u32 num_samples = 0;
alt_u32 num_samples_max = 7500;
alt_u32 bit_chk = 0;
alt_u32 test_status = 0;
for (group = 0; group < RW_MGR_MEM_IF_READ_DQS_WIDTH; group++)
{
// TODO: Figure out whether the sample counter and sample run
// values should be defined somewhere, or just leave them
// hardcoded.
IOWR_32DIRECT(0x58F00, group << 2, 0x00);
}
for (num_samples = 0; num_samples < num_samples_max; num_samples++) {
//do a read
//test_status = rw_mgr_mem_calibrate_read_test_all_ranks (group, 1, PASS_ONE_BIT, &bit_chk, 0);
//do a write
test_status = rw_mgr_mem_calibrate_write_test_all_ranks (group, 0, PASS_ONE_BIT, &bit_chk);
// do a sample
IOWR_32DIRECT(0x58FFC, 0, 0xFF);
}
read_samples();
}
void poll_for_sample_check (void)
{
alt_u32 check_status = 2;
alt_u32 delay = 0;
alt_u32 group = 0;
alt_u32 READY_FOR_READ = 0xFE;
alt_u32 READ_FINISHED = 0xFD;
alt_u32 EXIT_LOOP = 0x00;
alt_u32 FINISHED_SIGNAL = 0xFF;
for (;;) {
check_status = IORD_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0);
if (check_status == READY_FOR_READ) {
for (group = 0; group < RW_MGR_MEM_IF_READ_DQS_WIDTH; group++) {
delay = READ_SCC_DQS_EN_DELAY(group);
if (delay == 0) {
decrement_dqs_en_phase(group);
} else {
delay--;
scc_mgr_set_dqs_en_delay(group, delay);
}
IOWR_32DIRECT (SCC_MGR_DQS_ENA, 0, group);
}
IOWR_32DIRECT (SCC_MGR_UPD, 0, 0);
tracking_sample_check();
check_status = IORD_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0);
if (check_status != EXIT_LOOP) {
IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0, READ_FINISHED);
}
}
if (check_status == EXIT_LOOP) {
IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0, FINISHED_SIGNAL);
break;
}
}
}
#endif // TRACKING_WATCH_TEST || TRACKING_ERROR_TEST
#if BFM_MODE
int seq_main(void)
#elif HPS_HW
int sdram_calibration(void)
#else
int main(void)
#endif
{
param_t my_param;
gbl_t my_gbl;
alt_u32 pass;
alt_u32 i;
param = &my_param;
gbl = &my_gbl;
// Initialize the debug mode flags
gbl->phy_debug_mode_flags = 0;
// Set the calibration enabled by default
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
// Only enable margining by default if requested
#if ENABLE_MARGIN_REPORT_GEN
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_MARGIN_RPT;
#endif
// Only sweep all groups (regardless of fail state) by default if requested
#if ENABLE_SWEEP_ALL_GROUPS
gbl->phy_debug_mode_flags |= PHY_DEBUG_SWEEP_ALL_GROUPS;
#endif
//Set enabled read test by default
#if DISABLE_GUARANTEED_READ
gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
#if ENABLE_NON_DESTRUCTIVE_CALIB
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION;
#endif
#if BFM_MODE
init_outfile();
bfm_set_globals_from_config();
#endif
// Initialize the register file
initialize_reg_file();
#if HPS_HW
// Initialize any PHY CSR
initialize_hps_phy();
#endif
#if HHP_HPS
scc_mgr_initialize();
#endif
#if USE_DQS_TRACKING
initialize_tracking();
#endif
// Initialize the TCL report. This must occur before any printf
// but after the debug mode flags and register file
#if ENABLE_TCL_DEBUG
tclrpt_initialize(&my_debug_data);
#endif
// USER Enable all ranks, groups
for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) {
param->skip_ranks[i] = 0;
}
for (i = 0; i < NUM_SHADOW_REGS; ++i) {
param->skip_shadow_regs[i] = 0;
}
param->skip_groups = 0;
IPRINT("Preparing to start memory calibration");
TRACE_FUNC();
DPRINT(1, "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu dqs=%lu,%lu dq=%lu dm=%lu "
"ptap_delay=%lu dtap_delay=%lu dtap_dqsen_delay=%lu, dll=%lu",
RDIMM ? "r" : (LRDIMM ? "l" : ""),
DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ? "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ? "QR" : "??RATE??")),
(long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
(long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
(long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
(long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
(long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
(long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS,
(long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
(long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
(long unsigned int)RW_MGR_MEM_DATA_WIDTH,
(long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
(long unsigned int)IO_DELAY_PER_OPA_TAP,
(long unsigned int)IO_DELAY_PER_DCHAIN_TAP,
(long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
(long unsigned int)IO_DLL_CHAIN_LENGTH);
DPRINT(1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu io_in_d=%lu io_out1_d=%lu io_out2_d=%lu"
"dqs_in_reserve=%lu dqs_out_reserve=%lu",
(long unsigned int)IO_DQS_EN_PHASE_MAX,
(long unsigned int)IO_DQDQS_OUT_PHASE_MAX,
(long unsigned int)IO_DQS_EN_DELAY_MAX,
(long unsigned int)IO_DQS_IN_DELAY_MAX,
(long unsigned int)IO_IO_IN_DELAY_MAX,
(long unsigned int)IO_IO_OUT1_DELAY_MAX,
(long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_DQS_IN_RESERVE,
(long unsigned int)IO_DQS_OUT_RESERVE);
#if HCX_COMPAT_MODE || ENABLE_INST_ROM_WRITE
hc_initialize_rom_data();
#endif
#if !HARD_PHY
// Hard PHY does not support soft reset
IOWR_32DIRECT (RW_MGR_SOFT_RESET, 0, 0);
#endif
//USER update info for sims
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
// Load global needed for those actions that require
// some dynamic calibration support
#if HARD_PHY
dyn_calib_steps = STATIC_CALIB_STEPS;
#else
dyn_calib_steps = IORD_32DIRECT(PHY_MGR_CALIB_SKIP_STEPS, 0);
#endif
// Load global to allow dynamic selection of delay loop settings
// based on calibration mode
if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS)) {
skip_delay_mask = 0xff;
} else {
skip_delay_mask = 0x0;
}
#ifdef TEST_SIZE
if (!check_test_mem(1)) {
IOWR_32DIRECT (PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090);
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
}
write_test_mem();
if (!check_test_mem(0)) {
IOWR_32DIRECT (PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191);
IOWR_32DIRECT (PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
}
#endif
#if HHP_HPS_SIMULATION
// configure controller
initialize_hps_controller();
#endif
#if ENABLE_TCL_DEBUG && USE_USER_RDIMM_VALUE
tclrpt_loop();
#endif
#if ENABLE_NON_DES_CAL_TEST
rw_mgr_mem_initialize ();
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE);
// IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_SELF_REFRESH);
pass = run_mem_calibrate (1);
#else
#if ENABLE_NON_DES_CAL
#if ENABLE_TCL_DEBUG
tclrpt_loop();
#else
pass = run_mem_calibrate (1);
#endif
#else
pass = run_mem_calibrate ();
#endif
#endif
#if TRACKING_WATCH_TEST
if (IORD_32DIRECT(REG_FILE_TRK_SAMPLE_CHECK, 0) == 0xEE) {
read_samples();
}
#endif
#if ENABLE_PRINTF_LOG
IPRINT("Calibration complete");
// Send the end of transmission character
IPRINT("%c", 0x4);
#endif
#if BFM_MODE
#if ENABLE_TCL_DEBUG
tclrpt_dump_internal_data();
#endif
bfm_sequencer_is_done();
#elif HHP_HPS_SIMULATION
// nothing to do for HPS simulation following calibration
while (1) {
}
#elif ENABLE_TCL_DEBUG
#if HPS_HW
// EMPTY
#else
tclrpt_loop();
#endif
#else
#if HPS_HW
// EMPTY
#else
while (1) {
user_init_cal_req();
}
#endif
#endif
return pass;
}
#if ENABLE_BRINGUP_DEBUGGING
///////////////////////////////////////////////////////////////////////////////////////
// Bring-Up test Support
///////////////////////////////////////////////////////////////////////////////////////
void do_bringup_test_guaranteed_write (void)
{
alt_u32 r;
TRACE_FUNC();
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
//USER Load up a constant bursts
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT1);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT2);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x20);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_0_1_A_5_WAIT3);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE_0_1_A_5);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
void do_bringup_test_clear_di_buf (alt_u32 group)
{
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 128);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_CLEAR_DI_BUF);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, group << 2, __RW_MGR_DO_CLEAR_DI_BUF);
}
void do_bringup_test_guaranteed_read (alt_u32 group)
{
IOWR_32DIRECT (PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 16);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_DO_TEST_READ);
IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 16);
IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_DO_TEST_READ_POST_WAIT);
IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, group << 2, __RW_MGR_DO_TEST_READ);
}
void do_bringup_test ()
{
int i;
alt_u32 group;
alt_u32 v = 0;
group = 0;
mem_config ();
// 15 is the maximum latency (should make dependent on actual design
IOWR_32DIRECT (PHY_MGR_PHY_RLAT, 0, 15); /* lfifo setting */
#if ARRIAV || CYCLONEV
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
IOWR_32DIRECT (SCC_MGR_GROUP_COUNTER, 0, i);
scc_set_bypass_mode(i, 0);
}
#endif
// initialize global buffer to something known
for (i = 0; i < sizeof(di_buf_gbl); i++) {
di_buf_gbl[i] = 0xee;
}
// pre-increment vfifo to ensure not at max value
rw_mgr_incr_vfifo(group, &v);
rw_mgr_incr_vfifo(group, &v);
do_bringup_test_clear_di_buf(group);
while (1) {
do_bringup_test_guaranteed_write();
do_bringup_test_guaranteed_read(group);
load_di_buf_gbl();
rw_mgr_incr_vfifo(group, &v);
}
}
#endif // ENABLE_BRINGUP_DEBUGGING
#if ENABLE_ASSERT
void err_report_internal_error
(
const char* description,
const char* module,
const char* file,
int line
)
{
void *array[10];
size_t size;
char **strings;
size_t i;
fprintf(stderr, ERR_IE_TEXT, module, file, line, description, "\n");
size = backtrace (array, 10);
strings = backtrace_symbols (array, size);
fprintf (stderr, "Obtained %zd stack frames.\n", size);
for (i = 0; i < size; i++)
{
fprintf (stderr, "%s\n", strings[i]);
}
free (strings);
}
#endif